Improved noninvasive fetal variant calling using standardized benchmarking approaches
The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-01-01
|
Series: | Computational and Structural Biotechnology Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2001037020305572 |
id |
doaj-6c7be39824a844cdac28546adf2a008c |
---|---|
record_format |
Article |
spelling |
doaj-6c7be39824a844cdac28546adf2a008c2021-01-10T04:10:23ZengElsevierComputational and Structural Biotechnology Journal2001-03702021-01-0119509517Improved noninvasive fetal variant calling using standardized benchmarking approachesTom Rabinowitz0Shira Deri-Rozov1Noam Shomron2Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, IsraelFaculty of Medicine, Tel Aviv University, Tel Aviv 69978, IsraelCorresponding author.; Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, IsraelThe technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively decipher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves performance, particularly in indels and biparental loci. These results emphasize the importance of using widely accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promoting informed choices among families and physicians.http://www.sciencedirect.com/science/article/pii/S2001037020305572Noninvasive prenatal diagnosisVariant callingNIPTNIPDcell-free DNAcfDNA |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tom Rabinowitz Shira Deri-Rozov Noam Shomron |
spellingShingle |
Tom Rabinowitz Shira Deri-Rozov Noam Shomron Improved noninvasive fetal variant calling using standardized benchmarking approaches Computational and Structural Biotechnology Journal Noninvasive prenatal diagnosis Variant calling NIPT NIPD cell-free DNA cfDNA |
author_facet |
Tom Rabinowitz Shira Deri-Rozov Noam Shomron |
author_sort |
Tom Rabinowitz |
title |
Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_short |
Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_full |
Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_fullStr |
Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_full_unstemmed |
Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_sort |
improved noninvasive fetal variant calling using standardized benchmarking approaches |
publisher |
Elsevier |
series |
Computational and Structural Biotechnology Journal |
issn |
2001-0370 |
publishDate |
2021-01-01 |
description |
The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively decipher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves performance, particularly in indels and biparental loci. These results emphasize the importance of using widely accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promoting informed choices among families and physicians. |
topic |
Noninvasive prenatal diagnosis Variant calling NIPT NIPD cell-free DNA cfDNA |
url |
http://www.sciencedirect.com/science/article/pii/S2001037020305572 |
work_keys_str_mv |
AT tomrabinowitz improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches AT shiraderirozov improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches AT noamshomron improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches |
_version_ |
1724343732660076544 |