Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways

Abstract Background Keto-analogues administration plays an important role in clinical chronic kidney disease (CKD) adjunctive therapy, however previous studies on their reno-protective effect mainly focused on kidney pathological changes induced by nephrectomy. This study was designed to explore the...

Full description

Bibliographic Details
Main Authors: Meng Wang, Huzi Xu, Octavia Li-Sien Chong Lee Shin, Li Li, Hui Gao, Zhi Zhao, Fan Zhu, Han Zhu, Wangqun Liang, Kun Qian, Chunxiu Zhang, Rui Zeng, Hanjing Zhou, Ying Yao
Format: Article
Language:English
Published: BMC 2019-04-01
Series:Journal of Translational Medicine
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12967-019-1856-9
Description
Summary:Abstract Background Keto-analogues administration plays an important role in clinical chronic kidney disease (CKD) adjunctive therapy, however previous studies on their reno-protective effect mainly focused on kidney pathological changes induced by nephrectomy. This study was designed to explore the currently understudied alternative mechanisms by which compound α-ketoacid tablets (KA) influenced ischemia–reperfusion (IR) induced murine renal injury, and to probe the current status of KA administration on staving CKD progression in Chinese CKD patients at different stages. Methods In animal experiment, IR surgery was performed to mimic progressive chronic kidney injury, while KA was administrated orally. For clinical research, a retrospective cohort study was conducted to delineate the usage and effects of KA on attenuating CKD exacerbation. End-point CKD event was defined as 50% reduction of initial estimated glomerular filtration rate (eGFR). Kaplan–Meier analysis and COX proportional hazard regression model were adopted to calculate the cumulative probability to reach the end-point and hazard ratio of renal function deterioration. Results In animal study, KA presented a protective effect on IR induced renal injury and fibrosis by attenuating inflammatory infiltration and apoptosis via inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In clinical research, after adjusting basic demographic factors, patients at stages 4 and 5 in KA group presented a much delayed and slower incidence of eGFR decrease compared to those in No-KA group (hazard ratio (HR) = 0.115, 95% confidence interval (CI) 0.021–0.639, p = 0.0134), demonstrating a positive effect of KA on staving CKD progression. Conclusion KA improved IR induced chronic renal injury and fibrosis, and seemed to be a prospective protective factor in end stage renal disease.
ISSN:1479-5876