The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography

One of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFE...

Full description

Bibliographic Details
Main Authors: Alfonso M. Gañán-Calvo, Henry N. Chapman, Michael Heymann, Max O. Wiedorn, Juraj Knoska, Braulio Gañán-Riesco, José M. López-Herrera, Francisco Cruz-Mazo, Miguel A. Herrada, José M. Montanero, Saša Bajt
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/8/990
id doaj-6dbe1fd232dd4fdd960ec9bba3403235
record_format Article
spelling doaj-6dbe1fd232dd4fdd960ec9bba34032352021-08-26T13:39:38ZengMDPI AGCrystals2073-43522021-08-011199099010.3390/cryst11080990The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond CrystallographyAlfonso M. Gañán-Calvo0Henry N. Chapman1Michael Heymann2Max O. Wiedorn3Juraj Knoska4Braulio Gañán-Riesco5José M. López-Herrera6Francisco Cruz-Mazo7Miguel A. Herrada8José M. Montanero9Saša Bajt10Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, SpainCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, GermanyInstitute for Biomaterials and Bimolecular Systems, University of Stuttgart, Pfaffenwaldring 51, 70569 Stuttgart, GermanyCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, GermanyCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, GermanyIngeniatrics Tec. S.L., 41900 Camas, SpainDepartamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, SpainDepartamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, SpainDepartamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, SpainDepartamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, SpainThe Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, GermanyOne of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFELs. In this work, we demonstrate the validity of a classical scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. We show that, while a capillary jet is a globally unstable system to linear perturbations above a critical length, its actual and shorter long-term average intact length is determined by the nonlinear perturbations coming from the jet breakup itself. Therefore, this length is determined solely by the properties of the liquid, the average velocity of the liquid and the flow rate expelled. This confirms the very early observations from Smith and Moss 1917, Proc R Soc Lond A Math Phys Eng, 93, 373, to McCarthy and Molloy 1974, Chem Eng J, 7, 1, among others, while it contrasts with the classical conception of temporal stability that attributes the natural breakup length to the jet birth conditions in the ejector or small interactions with the environment.https://www.mdpi.com/2073-4352/11/8/990capillary jetsbreakup lengthflow focusingcapillary instability
collection DOAJ
language English
format Article
sources DOAJ
author Alfonso M. Gañán-Calvo
Henry N. Chapman
Michael Heymann
Max O. Wiedorn
Juraj Knoska
Braulio Gañán-Riesco
José M. López-Herrera
Francisco Cruz-Mazo
Miguel A. Herrada
José M. Montanero
Saša Bajt
spellingShingle Alfonso M. Gañán-Calvo
Henry N. Chapman
Michael Heymann
Max O. Wiedorn
Juraj Knoska
Braulio Gañán-Riesco
José M. López-Herrera
Francisco Cruz-Mazo
Miguel A. Herrada
José M. Montanero
Saša Bajt
The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
Crystals
capillary jets
breakup length
flow focusing
capillary instability
author_facet Alfonso M. Gañán-Calvo
Henry N. Chapman
Michael Heymann
Max O. Wiedorn
Juraj Knoska
Braulio Gañán-Riesco
José M. López-Herrera
Francisco Cruz-Mazo
Miguel A. Herrada
José M. Montanero
Saša Bajt
author_sort Alfonso M. Gañán-Calvo
title The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
title_short The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
title_full The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
title_fullStr The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
title_full_unstemmed The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
title_sort natural breakup length of a steady capillary jet: application to serial femtosecond crystallography
publisher MDPI AG
series Crystals
issn 2073-4352
publishDate 2021-08-01
description One of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFELs. In this work, we demonstrate the validity of a classical scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. We show that, while a capillary jet is a globally unstable system to linear perturbations above a critical length, its actual and shorter long-term average intact length is determined by the nonlinear perturbations coming from the jet breakup itself. Therefore, this length is determined solely by the properties of the liquid, the average velocity of the liquid and the flow rate expelled. This confirms the very early observations from Smith and Moss 1917, Proc R Soc Lond A Math Phys Eng, 93, 373, to McCarthy and Molloy 1974, Chem Eng J, 7, 1, among others, while it contrasts with the classical conception of temporal stability that attributes the natural breakup length to the jet birth conditions in the ejector or small interactions with the environment.
topic capillary jets
breakup length
flow focusing
capillary instability
url https://www.mdpi.com/2073-4352/11/8/990
work_keys_str_mv AT alfonsomganancalvo thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT henrynchapman thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT michaelheymann thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT maxowiedorn thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT jurajknoska thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT brauliogananriesco thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT josemlopezherrera thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT franciscocruzmazo thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT miguelaherrada thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT josemmontanero thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT sasabajt thenaturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT alfonsomganancalvo naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT henrynchapman naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT michaelheymann naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT maxowiedorn naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT jurajknoska naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT brauliogananriesco naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT josemlopezherrera naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT franciscocruzmazo naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT miguelaherrada naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT josemmontanero naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
AT sasabajt naturalbreakuplengthofasteadycapillaryjetapplicationtoserialfemtosecondcrystallography
_version_ 1721194025305767936