Observer-Based Controller Design for a Class of Nonlinear Networked Control Systems with Random Time-Delays Modeled by Markov Chains
This paper investigates the observer-based controller design problem for a class of nonlinear networked control systems with random time-delays. The nonlinearity is assumed to satisfy a global Lipschitz condition and two dependent Markov chains are employed to describe the time-delay from sensor to...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Journal of Control Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/1523825 |
Summary: | This paper investigates the observer-based controller design problem for a class of nonlinear networked control systems with random time-delays. The nonlinearity is assumed to satisfy a global Lipschitz condition and two dependent Markov chains are employed to describe the time-delay from sensor to controller (S-C delay) and the time-delay from controller to actuator (C-A delay), respectively. The transition probabilities of S-C delay and C-A delay are both assumed to be partly inaccessible. Sufficient conditions on the stochastic stability for the closed-loop systems are obtained by constructing proper Lyapunov functional. The methods of calculating the controller and the observer gain matrix are also given. Two numerical examples are used to illustrate the effectiveness of the proposed method. |
---|---|
ISSN: | 1687-5249 1687-5257 |