Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process

Abstract We investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hy...

Full description

Bibliographic Details
Main Authors: C. A. M. Iglesias, J. C. R. de Araújo, J. Xavier, R. L. Anders, J. M. de Araújo, R. B. da Silva, J. M. Soares, E. L. Brito, L. Streck, J. L. C. Fonseca, C. C. Plá Cid, M. Gamino, E. F. Silva, C. Chesman, M. A. Correa, S. N. de Medeiros, F. Bohn
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-91334-9
id doaj-6e55f557bf794a6fa8969b3ba35d426c
record_format Article
spelling doaj-6e55f557bf794a6fa8969b3ba35d426c2021-06-06T11:39:18ZengNature Publishing GroupScientific Reports2045-23222021-06-0111111310.1038/s41598-021-91334-9Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating processC. A. M. Iglesias0J. C. R. de Araújo1J. Xavier2R. L. Anders3J. M. de Araújo4R. B. da Silva5J. M. Soares6E. L. Brito7L. Streck8J. L. C. Fonseca9C. C. Plá Cid10M. Gamino11E. F. Silva12C. Chesman13M. A. Correa14S. N. de Medeiros15F. Bohn16Departamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade do Estado do Rio Grande do NortePOLYMAT, Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHUInstituto de Química, Universidade Federal do Rio Grande do NorteInstituto de Química, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal de Santa CatarinaDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteDepartamento de Física, Universidade Federal do Rio Grande do NorteAbstract We investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia.https://doi.org/10.1038/s41598-021-91334-9
collection DOAJ
language English
format Article
sources DOAJ
author C. A. M. Iglesias
J. C. R. de Araújo
J. Xavier
R. L. Anders
J. M. de Araújo
R. B. da Silva
J. M. Soares
E. L. Brito
L. Streck
J. L. C. Fonseca
C. C. Plá Cid
M. Gamino
E. F. Silva
C. Chesman
M. A. Correa
S. N. de Medeiros
F. Bohn
spellingShingle C. A. M. Iglesias
J. C. R. de Araújo
J. Xavier
R. L. Anders
J. M. de Araújo
R. B. da Silva
J. M. Soares
E. L. Brito
L. Streck
J. L. C. Fonseca
C. C. Plá Cid
M. Gamino
E. F. Silva
C. Chesman
M. A. Correa
S. N. de Medeiros
F. Bohn
Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
Scientific Reports
author_facet C. A. M. Iglesias
J. C. R. de Araújo
J. Xavier
R. L. Anders
J. M. de Araújo
R. B. da Silva
J. M. Soares
E. L. Brito
L. Streck
J. L. C. Fonseca
C. C. Plá Cid
M. Gamino
E. F. Silva
C. Chesman
M. A. Correa
S. N. de Medeiros
F. Bohn
author_sort C. A. M. Iglesias
title Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
title_short Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
title_full Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
title_fullStr Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
title_full_unstemmed Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
title_sort magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2021-06-01
description Abstract We investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia.
url https://doi.org/10.1038/s41598-021-91334-9
work_keys_str_mv AT camiglesias magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT jcrdearaujo magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT jxavier magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT rlanders magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT jmdearaujo magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT rbdasilva magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT jmsoares magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT elbrito magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT lstreck magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT jlcfonseca magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT ccplacid magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT mgamino magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT efsilva magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT cchesman magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT macorrea magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT sndemedeiros magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
AT fbohn magneticnanoparticleshyperthermiainanonadiabaticandradiatingprocess
_version_ 1721393726542053376