Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8.

The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol)) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism o...

Full description

Bibliographic Details
Main Authors: Yen-Chin Liu, Rei-Lin Kuo, Jing-Yi Lin, Peng-Nien Huang, Yi Huang, Hsuan Liu, Jamine J Arnold, Shu-Jen Chen, Robert Yung-Liang Wang, Craig E Cameron, Shin-Ru Shih
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-06-01
Series:PLoS Pathogens
Online Access:http://europepmc.org/articles/PMC4072778?pdf=render
Description
Summary:The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol)) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol) enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol) associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol) complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.
ISSN:1553-7366
1553-7374