Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$

This work deals with the nonlocal $p(x)$-Laplacian equations in $R^{N}$ with non-variational form \begin{align*} \left\{\begin{aligned} &A(u)\big(-\Delta_{p(x)}u+|u|^{p(x)-2}u\big)=B(u)f(x,u) \text{in}R^{N},\\ &u\in W^{1, p(x)}(R^{N}), \end{aligned} \right.\end{align*} and with the variation...

Full description

Bibliographic Details
Main Author: Chao Ji
Format: Article
Language:English
Published: University of Szeged 2012-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1789
id doaj-6e8b5c5a100b4ab48d34cf853e65dc4d
record_format Article
spelling doaj-6e8b5c5a100b4ab48d34cf853e65dc4d2021-07-14T07:21:24ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752012-08-0120127611210.14232/ejqtde.2012.1.761789Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$Chao Ji0East China University of Science and Technology, Shanghai, P. R. ChinaThis work deals with the nonlocal $p(x)$-Laplacian equations in $R^{N}$ with non-variational form \begin{align*} \left\{\begin{aligned} &A(u)\big(-\Delta_{p(x)}u+|u|^{p(x)-2}u\big)=B(u)f(x,u) \text{in}R^{N},\\ &u\in W^{1, p(x)}(R^{N}), \end{aligned} \right.\end{align*} and with the variational form \begin{align*} \left\{\begin{aligned} & a\Big(\int_{R^{N}}\frac{\vert \nabla u\vert^{p(x)}+\vert u\vert^{p(x)}}{p(x)}dx\Big)(-\Delta_{p(x)}u+|u|^{p(x)-2}u)&\\ &=B\Big(\int_{R^{N}}F(x, u)dx \Big)f(x, u) \text{in} R^{N},&\\ &u\in W^{1, p(x)}(R^{N}), \end{aligned}\right. \end{align*} where $F(x,t)=\int_{0}^{t}f(x,s)ds$, and $a$ is allowed to be singular at zero. Using $(S_{+})$ mapping theory and the variational method, some results on existence and multiplicity for the problems in $R^{N}$ are obtained.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1789nonlocal p(x)-laplacian equationvariational methodvariable exponent spaces
collection DOAJ
language English
format Article
sources DOAJ
author Chao Ji
spellingShingle Chao Ji
Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
Electronic Journal of Qualitative Theory of Differential Equations
nonlocal p(x)-laplacian equation
variational method
variable exponent spaces
author_facet Chao Ji
author_sort Chao Ji
title Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
title_short Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
title_full Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
title_fullStr Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
title_full_unstemmed Existence and multiplicity of solutions for the nonlocal p(x)-Laplacian equations in $R^N$
title_sort existence and multiplicity of solutions for the nonlocal p(x)-laplacian equations in $r^n$
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2012-08-01
description This work deals with the nonlocal $p(x)$-Laplacian equations in $R^{N}$ with non-variational form \begin{align*} \left\{\begin{aligned} &A(u)\big(-\Delta_{p(x)}u+|u|^{p(x)-2}u\big)=B(u)f(x,u) \text{in}R^{N},\\ &u\in W^{1, p(x)}(R^{N}), \end{aligned} \right.\end{align*} and with the variational form \begin{align*} \left\{\begin{aligned} & a\Big(\int_{R^{N}}\frac{\vert \nabla u\vert^{p(x)}+\vert u\vert^{p(x)}}{p(x)}dx\Big)(-\Delta_{p(x)}u+|u|^{p(x)-2}u)&\\ &=B\Big(\int_{R^{N}}F(x, u)dx \Big)f(x, u) \text{in} R^{N},&\\ &u\in W^{1, p(x)}(R^{N}), \end{aligned}\right. \end{align*} where $F(x,t)=\int_{0}^{t}f(x,s)ds$, and $a$ is allowed to be singular at zero. Using $(S_{+})$ mapping theory and the variational method, some results on existence and multiplicity for the problems in $R^{N}$ are obtained.
topic nonlocal p(x)-laplacian equation
variational method
variable exponent spaces
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1789
work_keys_str_mv AT chaoji existenceandmultiplicityofsolutionsforthenonlocalpxlaplacianequationsinrn
_version_ 1721303707120828416