Evaluation of recycled MgO-C bricks and dead-burned dolomite fines in setting slag foaming in the electric arc furnace

Abstract Production cost reduction for the Electric Arc Furnace (EAF) technology is strongly dependent on the efficiency of the electrical energy being introduced into the metal bath. Besides EAF technology, the slag foaming process is currently applied to some other equipment for steel production a...

Full description

Bibliographic Details
Main Authors: Thiago da Costa Avelar, Felipe Fardin Grillo, Eduardo Junca, Jorge Luís Coleti, José Roberto de Oliveira
Format: Article
Language:English
Published: Fundação Gorceix
Series:REM: International Engineering Journal
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000100067&lng=en&tlng=en
Description
Summary:Abstract Production cost reduction for the Electric Arc Furnace (EAF) technology is strongly dependent on the efficiency of the electrical energy being introduced into the metal bath. Besides EAF technology, the slag foaming process is currently applied to some other equipment for steel production aiming to save energy, productivity improvements, enhance the refractory service life and inhibit steel re-oxidation. In this way, this study involved the recycling options of Crushed MgO-C spent refractories removed from the EAF without complex and costly beneficiation, with emphasis on its application as a slag conditioner, since its composition presents high MgO content. The experiments were performed in a laboratory induction furnace and the temperature was controlled at 1700°C.The initial height of the slag was recorded and foaming briquettes added into the furnace. The experiments were carried out for 30 minutes. When the foaming process was finalized, an aliquot from the slag was collected to be analyzed by chemical analysis. Then, the metal with slag was tapped into a mold. The results indicated that the best viscosity was 0.39poise. The maximum height of foam formation was observed for a binary basicity greater than 1.2. The concentration of MgO in the slag is close to the saturation point.
ISSN:2448-167X