Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing

The consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they a...

Full description

Bibliographic Details
Main Authors: Xin Wu, Guanglin Li, Fengyun He
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/6/1315
id doaj-6f3b5e652eff46129f462107f8e2e8f4
record_format Article
spelling doaj-6f3b5e652eff46129f462107f8e2e8f42021-06-30T23:32:50ZengMDPI AGFoods2304-81582021-06-01101315131510.3390/foods10061315Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data ProcessingXin Wu0Guanglin Li1Fengyun He2Department of Agricultural Engineering, College of Engineering and Technology, Southwest University, Chongqing 400715, ChinaDepartment of Agricultural Engineering, College of Engineering and Technology, Southwest University, Chongqing 400715, ChinaDepartment of Agricultural Engineering, College of Engineering and Technology, Southwest University, Chongqing 400715, ChinaThe consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they are destructive, time-consuming, and polluting. It is necessary to detect internal qualities of pears rapidly and nondestructively by using near-infrared (NIR) spectroscopy. In this study, we used a self-made NIR spectrum detector with an improved variable selection algorithm, named the variable stability and cluster analysis algorithm (VSCAA), to establish a partial least squares regression (PLSR) model to detect SSC content in snow pears. VSCAA is a variable selection method based on the combination of variable stability and cluster analysis to select the infrared spectrum variables. To reflect the advantages of VSCAA, we compared the classical variable selection methods (synergy interval partial least squares (SiPLS), genetic algorithm (GA), successive projections algorithm (SPA), and bootstrapping soft shrinkage (BOSS)) to extract useful wavelengths. The PLSR model, based on the useful variables selected by SiPLS-VSCAA, was optimal for measuring SSC in pears, and the correlation coefficient of calibration (Rc), root mean square error of cross validation (RMSECV), correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD) were 0.942, 0.198%, 0.936, 0.222%, and 2.857, respectively. Then, we applied these variable selection methods to select the characteristic wavelengths for measuring the TA content and TI value in snow pears. The prediction PLSR models, based on the variables selected by GA-BOSS to measure TA and that by GA-VSCAA to detect TI, were the best models, and the Rc, RMSECV, Rp and RPD were 0.931, 0.124%, 0.912, 0.151%, and 2.434 and 0.968, 0.080%, 0.968, 0.089%, and 3.775, respectively. The results showed that the self-made NIR-spectrum detector based on a portable NIR spectrometer with multivariate data processing was a good tool for rapid and nondestructive analysis of internal quality in pears.https://www.mdpi.com/2304-8158/10/6/1315variable selection methodsvariable stability and cluster analysis algorithm (VSCAA)internal qualitynear-infrared (NIR) spectroscopypears
collection DOAJ
language English
format Article
sources DOAJ
author Xin Wu
Guanglin Li
Fengyun He
spellingShingle Xin Wu
Guanglin Li
Fengyun He
Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
Foods
variable selection methods
variable stability and cluster analysis algorithm (VSCAA)
internal quality
near-infrared (NIR) spectroscopy
pears
author_facet Xin Wu
Guanglin Li
Fengyun He
author_sort Xin Wu
title Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
title_short Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
title_full Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
title_fullStr Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
title_full_unstemmed Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
title_sort nondestructive analysis of internal quality in pears with a self-made near-infrared spectrum detector combined with multivariate data processing
publisher MDPI AG
series Foods
issn 2304-8158
publishDate 2021-06-01
description The consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they are destructive, time-consuming, and polluting. It is necessary to detect internal qualities of pears rapidly and nondestructively by using near-infrared (NIR) spectroscopy. In this study, we used a self-made NIR spectrum detector with an improved variable selection algorithm, named the variable stability and cluster analysis algorithm (VSCAA), to establish a partial least squares regression (PLSR) model to detect SSC content in snow pears. VSCAA is a variable selection method based on the combination of variable stability and cluster analysis to select the infrared spectrum variables. To reflect the advantages of VSCAA, we compared the classical variable selection methods (synergy interval partial least squares (SiPLS), genetic algorithm (GA), successive projections algorithm (SPA), and bootstrapping soft shrinkage (BOSS)) to extract useful wavelengths. The PLSR model, based on the useful variables selected by SiPLS-VSCAA, was optimal for measuring SSC in pears, and the correlation coefficient of calibration (Rc), root mean square error of cross validation (RMSECV), correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD) were 0.942, 0.198%, 0.936, 0.222%, and 2.857, respectively. Then, we applied these variable selection methods to select the characteristic wavelengths for measuring the TA content and TI value in snow pears. The prediction PLSR models, based on the variables selected by GA-BOSS to measure TA and that by GA-VSCAA to detect TI, were the best models, and the Rc, RMSECV, Rp and RPD were 0.931, 0.124%, 0.912, 0.151%, and 2.434 and 0.968, 0.080%, 0.968, 0.089%, and 3.775, respectively. The results showed that the self-made NIR-spectrum detector based on a portable NIR spectrometer with multivariate data processing was a good tool for rapid and nondestructive analysis of internal quality in pears.
topic variable selection methods
variable stability and cluster analysis algorithm (VSCAA)
internal quality
near-infrared (NIR) spectroscopy
pears
url https://www.mdpi.com/2304-8158/10/6/1315
work_keys_str_mv AT xinwu nondestructiveanalysisofinternalqualityinpearswithaselfmadenearinfraredspectrumdetectorcombinedwithmultivariatedataprocessing
AT guanglinli nondestructiveanalysisofinternalqualityinpearswithaselfmadenearinfraredspectrumdetectorcombinedwithmultivariatedataprocessing
AT fengyunhe nondestructiveanalysisofinternalqualityinpearswithaselfmadenearinfraredspectrumdetectorcombinedwithmultivariatedataprocessing
_version_ 1721351000573345792