Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)

Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse c...

Full description

Bibliographic Details
Main Authors: Han Han, Zhuoying Liu, Fanming Meng, Yangshuai Jiang, Jifeng Cai
Format: Article
Language:English
Published: PeerJ Inc. 2020-08-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/9581.pdf
id doaj-6f4d3c9cee9a4247b9b5dcae2653ca46
record_format Article
spelling doaj-6f4d3c9cee9a4247b9b5dcae2653ca462020-11-25T03:26:28ZengPeerJ Inc.PeerJ2167-83592020-08-018e958110.7717/peerj.9581Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)Han Han0Zhuoying Liu1Fanming Meng2Yangshuai Jiang3Jifeng Cai4Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, ChinaDepartment of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, ChinaDepartment of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, ChinaDepartment of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, ChinaDepartment of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, ChinaBackground The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.https://peerj.com/articles/9581.pdfBlow flyForensic entomologyAldrichina grahamiAntennae transcriptomeMinimum post-mortem interval
collection DOAJ
language English
format Article
sources DOAJ
author Han Han
Zhuoying Liu
Fanming Meng
Yangshuai Jiang
Jifeng Cai
spellingShingle Han Han
Zhuoying Liu
Fanming Meng
Yangshuai Jiang
Jifeng Cai
Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
PeerJ
Blow fly
Forensic entomology
Aldrichina grahami
Antennae transcriptome
Minimum post-mortem interval
author_facet Han Han
Zhuoying Liu
Fanming Meng
Yangshuai Jiang
Jifeng Cai
author_sort Han Han
title Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
title_short Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
title_full Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
title_fullStr Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
title_full_unstemmed Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae)
title_sort identification of olfactory genes of a forensically important blow fly, aldrichina grahami (diptera: calliphoridae)
publisher PeerJ Inc.
series PeerJ
issn 2167-8359
publishDate 2020-08-01
description Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.
topic Blow fly
Forensic entomology
Aldrichina grahami
Antennae transcriptome
Minimum post-mortem interval
url https://peerj.com/articles/9581.pdf
work_keys_str_mv AT hanhan identificationofolfactorygenesofaforensicallyimportantblowflyaldrichinagrahamidipteracalliphoridae
AT zhuoyingliu identificationofolfactorygenesofaforensicallyimportantblowflyaldrichinagrahamidipteracalliphoridae
AT fanmingmeng identificationofolfactorygenesofaforensicallyimportantblowflyaldrichinagrahamidipteracalliphoridae
AT yangshuaijiang identificationofolfactorygenesofaforensicallyimportantblowflyaldrichinagrahamidipteracalliphoridae
AT jifengcai identificationofolfactorygenesofaforensicallyimportantblowflyaldrichinagrahamidipteracalliphoridae
_version_ 1724592572370780160