Multi-Domain Semantic Information and Physical Behavior Modeling of Power Systems and Gas Turbines Expanding the Common Information Model

Due to the rapid increase of intermittent energy resources (IERs), there is a need to have dispatchable production available to ensure secure operation and increase opportunity for energy system flexibility. Gas turbine-based power plants offer flexible operation that is being improved with new tech...

Full description

Bibliographic Details
Main Authors: Francisco J. Gomez, Miguel Aguilera Chaves, Luigi Vanfretti, Svein Harald Olsen
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
CIM
Online Access:https://ieeexplore.ieee.org/document/8540835/
Description
Summary:Due to the rapid increase of intermittent energy resources (IERs), there is a need to have dispatchable production available to ensure secure operation and increase opportunity for energy system flexibility. Gas turbine-based power plants offer flexible operation that is being improved with new technology advancements. Those plants provide, in general, quick start together with significant ramping capability, which can be exploited to balance IERs. Consequently, to understand the potential source of flexibility, better models for gas turbines are required for power system studies and analysis. In this paper, both the required semantic information and physical behavior models of such multi-domain systems are considered. First, UML class diagrams and RDF schemas based on the common information model standards are used to describe the semantic information of the electrical power grid. An extension that exploits the ISO 15926 standard is proposed herein to derive the multi-domain semantics required by integrated electrical power grid with detailed gas turbine dynamic models. Second, the Modelica language is employed to create the equation-based models, which represent the behavior of a multi-domain physical system. A comparative simulation analysis between the power system domain model and the multi-domain model has been performed. Some differences between the turbine dynamics representation of the commonly used GGOV1 standard model and a more detailed gas turbine model are shown.
ISSN:2169-3536