Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition.

In response to inflammation, mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodeling and wound healing. Tumors apply persistent mechanical and pathological stress to tissues and causes continual infiltration of MSCs. Here, we d...

Full description

Bibliographic Details
Main Authors: Yingying Jing, Zhipeng Han, Yan Liu, Kai Sun, Shanshan Zhang, Guocheng Jiang, Rong Li, Lu Gao, Xue Zhao, Dong Wu, Xiong Cai, Mengchao Wu, Lixin Wei
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3429457?pdf=render
Description
Summary:In response to inflammation, mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodeling and wound healing. Tumors apply persistent mechanical and pathological stress to tissues and causes continual infiltration of MSCs. Here, we demonstrate that MSCs promote human hepatocellular carcinoma (HCC) metastasis under the influence of inflammation. The metastasis promoting effect could be imitated with the supernatant of MSCs pretreated with IFNγ and TNFα. Interestingly, treatment of HCC cells with the supernatant leads to epithelial-mesenchymal transition (EMT), an effect related to the production of TGFβ by cytokines stimulated MSCs. Importantly, the levels of MSCs expressing SSEA4 in clinical HCC samples significantly correlated with poor prognosis of HCC, and EMT of HCC was strongly associated with a shorter cancer-free interval (CFI) and a worse overall survival (OS). Therefore, our results suggest that MSCs in tumor inflammatory microenvironment could promote tumor metastasis through TGFβ-induced EMT.
ISSN:1932-6203