Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications

Fractional calculus-based differential equations were found by previous studies to be promising tools in simulating local-scale anomalous diffusion for pollutants transport in natural geological media (geomedia), but efficient models are still needed for simulating anomalous transport over a broad s...

Full description

Bibliographic Details
Main Authors: Yong Zhang, Dongbao Zhou, Wei Wei, Jonathan M. Frame, Hongguang Sun, Alexander Y. Sun, Xingyuan Chen
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/7/790
Description
Summary:Fractional calculus-based differential equations were found by previous studies to be promising tools in simulating local-scale anomalous diffusion for pollutants transport in natural geological media (geomedia), but efficient models are still needed for simulating anomalous transport over a broad spectrum of scales. This study proposed a hierarchical framework of fractional advection-dispersion equations (FADEs) for modeling pollutants moving in the river corridor at a full spectrum of scales. Applications showed that the fixed-index FADE could model bed sediment and manganese transport in streams at the geomorphologic unit scale, whereas the variable-index FADE well fitted bedload snapshots at the reach scale with spatially varying indices. Further analyses revealed that the selection of the FADEs depended on the scale, type of the geomedium (i.e., riverbed, aquifer, or soil), and the type of available observation dataset (i.e., the tracer snapshot or breakthrough curve (BTC)). When the pollutant BTC was used, a single-index FADE with scale-dependent parameters could fit the data by upscaling anomalous transport without mapping the sub-grid, intermediate multi-index anomalous diffusion. Pollutant transport in geomedia, therefore, may exhibit complex anomalous scaling in space (and/or time), and the identification of the FADE’s index for the reach-scale anomalous transport, which links the geomorphologic unit and watershed scales, is the core for reliable applications of fractional calculus in hydrology.
ISSN:2227-7390