Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology

Mechanical and strain sensing capabilities of carbon nanotube (CNT) reinforced composites manufactured by digital light processing (DLP) 3D printing technology have been studied. Both CNT content and a post-curing treatment effects have been analyzed. It has been observed that post-curing treatment...

Full description

Bibliographic Details
Main Authors: Alejandro Cortés, Xoan F. Sánchez-Romate, Alberto Jiménez-Suárez, Mónica Campo, Alejandro Ureña, Silvia G. Prolongo
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Polymers
Subjects:
DLP
Online Access:https://www.mdpi.com/2073-4360/12/4/975
Description
Summary:Mechanical and strain sensing capabilities of carbon nanotube (CNT) reinforced composites manufactured by digital light processing (DLP) 3D printing technology have been studied. Both CNT content and a post-curing treatment effects have been analyzed. It has been observed that post-curing treatment has a significant influence on mechanical properties, with an increase of Young’s modulus and glass transition temperature whereas their effect in electrical properties is not so important. Furthermore, the strain sensing tests show a linear response of electrical resistance with applied strain, with higher values of sensitivity when decreasing CNT content due to a higher interparticle distance. Moreover, the electrical sensitivity of bending tests is significantly lower than in tensile ones due to the compression subjected face effect. Therefore, the good gauge factor values (around 2–3) and the high linear response proves the applicability of the proposed nanocomposites in structural health monitoring applications.
ISSN:2073-4360