GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications

<p>Global modeling of atmospheric chemistry is a grand computational challenge because of the need to simulate large coupled systems of  ∼ 100–1000 chemical species interacting with transport on all scales. Offline chemical transport models (CTMs), where the chemical continuity equations a...

Full description

Bibliographic Details
Main Authors: S. D. Eastham, M. S. Long, C. A. Keller, E. Lundgren, R. M. Yantosca, J. Zhuang, C. Li, C. J. Lee, M. Yannetti, B. M. Auer, T. L. Clune, J. Kouatchou, W. M. Putman, M. A. Thompson, A. L. Trayanov, A. M. Molod, R. V. Martin, D. J. Jacob
Format: Article
Language:English
Published: Copernicus Publications 2018-07-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/11/2941/2018/gmd-11-2941-2018.pdf
id doaj-71ba9db8726f454695bb1807b76fc70d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author S. D. Eastham
S. D. Eastham
M. S. Long
C. A. Keller
C. A. Keller
E. Lundgren
R. M. Yantosca
J. Zhuang
C. Li
C. J. Lee
M. Yannetti
B. M. Auer
B. M. Auer
T. L. Clune
J. Kouatchou
J. Kouatchou
W. M. Putman
M. A. Thompson
M. A. Thompson
A. L. Trayanov
A. L. Trayanov
A. M. Molod
R. V. Martin
R. V. Martin
D. J. Jacob
spellingShingle S. D. Eastham
S. D. Eastham
M. S. Long
C. A. Keller
C. A. Keller
E. Lundgren
R. M. Yantosca
J. Zhuang
C. Li
C. J. Lee
M. Yannetti
B. M. Auer
B. M. Auer
T. L. Clune
J. Kouatchou
J. Kouatchou
W. M. Putman
M. A. Thompson
M. A. Thompson
A. L. Trayanov
A. L. Trayanov
A. M. Molod
R. V. Martin
R. V. Martin
D. J. Jacob
GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
Geoscientific Model Development
author_facet S. D. Eastham
S. D. Eastham
M. S. Long
C. A. Keller
C. A. Keller
E. Lundgren
R. M. Yantosca
J. Zhuang
C. Li
C. J. Lee
M. Yannetti
B. M. Auer
B. M. Auer
T. L. Clune
J. Kouatchou
J. Kouatchou
W. M. Putman
M. A. Thompson
M. A. Thompson
A. L. Trayanov
A. L. Trayanov
A. M. Molod
R. V. Martin
R. V. Martin
D. J. Jacob
author_sort S. D. Eastham
title GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
title_short GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
title_full GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
title_fullStr GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
title_full_unstemmed GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
title_sort geos-chem high performance (gchp v11-02c): a next-generation implementation of the geos-chem chemical transport model for massively parallel applications
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2018-07-01
description <p>Global modeling of atmospheric chemistry is a grand computational challenge because of the need to simulate large coupled systems of  ∼ 100–1000 chemical species interacting with transport on all scales. Offline chemical transport models (CTMs), where the chemical continuity equations are solved using meteorological data as input, have usability advantages and are important vehicles for developing atmospheric chemistry knowledge that can then be transferred to Earth system models. However, they have generally not been designed to take advantage of massively parallel computing architectures. Here, we develop such a high-performance capability for GEOS-Chem (GCHP), a CTM driven by meteorological data from the NASA Goddard Earth Observation System (GEOS) and used by hundreds of research groups worldwide. GCHP is a grid-independent implementation of GEOS-Chem using the Earth System Modeling Framework (ESMF) that permits the same standard model to operate in a distributed-memory framework for massive parallelization. GCHP also allows GEOS-Chem to take advantage of the native GEOS cubed-sphere grid for greater accuracy and computational efficiency in simulating transport. GCHP enables GEOS-Chem simulations to be conducted with high computational scalability up to at least 500 cores, so that global simulations of stratosphere–troposphere oxidant–aerosol chemistry at C180 spatial resolution ( ∼ 0.5° × 0.625°) or finer become routinely feasible.</p>
url https://www.geosci-model-dev.net/11/2941/2018/gmd-11-2941-2018.pdf
work_keys_str_mv AT sdeastham geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT sdeastham geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT mslong geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT cakeller geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT cakeller geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT elundgren geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT rmyantosca geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT jzhuang geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT cli geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT cjlee geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT myannetti geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT bmauer geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT bmauer geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT tlclune geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT jkouatchou geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT jkouatchou geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT wmputman geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT mathompson geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT mathompson geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT altrayanov geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT altrayanov geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT ammolod geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT rvmartin geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT rvmartin geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
AT djjacob geoschemhighperformancegchpv1102canextgenerationimplementationofthegeoschemchemicaltransportmodelformassivelyparallelapplications
_version_ 1724757695169298432
spelling doaj-71ba9db8726f454695bb1807b76fc70d2020-11-25T02:46:32ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032018-07-01112941295310.5194/gmd-11-2941-2018GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applicationsS. D. Eastham0S. D. Eastham1M. S. Long2C. A. Keller3C. A. Keller4E. Lundgren5R. M. Yantosca6J. Zhuang7C. Li8C. J. Lee9M. Yannetti10B. M. Auer11B. M. Auer12T. L. Clune13J. Kouatchou14J. Kouatchou15W. M. Putman16M. A. Thompson17M. A. Thompson18A. L. Trayanov19A. L. Trayanov20A. M. Molod21R. V. Martin22R. V. Martin23D. J. Jacob24Laboratory for Aviation and the Environment, Massachusetts Institute of Technology, Cambridge, Massachusetts, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USAUniversities Space Research Association, Columbia, Maryland, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USADepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, CanadaDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, CanadaJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USAScience Systems and Applications, Inc., Lanham, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USAScience Systems and Applications, Inc., Lanham, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USAScience Systems and Applications, Inc., Lanham, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USAScience Systems and Applications, Inc., Lanham, Maryland, USANASA Global Modeling and Assimilation Office, Greenbelt, Maryland, USADepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, CanadaSmithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA<p>Global modeling of atmospheric chemistry is a grand computational challenge because of the need to simulate large coupled systems of  ∼ 100–1000 chemical species interacting with transport on all scales. Offline chemical transport models (CTMs), where the chemical continuity equations are solved using meteorological data as input, have usability advantages and are important vehicles for developing atmospheric chemistry knowledge that can then be transferred to Earth system models. However, they have generally not been designed to take advantage of massively parallel computing architectures. Here, we develop such a high-performance capability for GEOS-Chem (GCHP), a CTM driven by meteorological data from the NASA Goddard Earth Observation System (GEOS) and used by hundreds of research groups worldwide. GCHP is a grid-independent implementation of GEOS-Chem using the Earth System Modeling Framework (ESMF) that permits the same standard model to operate in a distributed-memory framework for massive parallelization. GCHP also allows GEOS-Chem to take advantage of the native GEOS cubed-sphere grid for greater accuracy and computational efficiency in simulating transport. GCHP enables GEOS-Chem simulations to be conducted with high computational scalability up to at least 500 cores, so that global simulations of stratosphere–troposphere oxidant–aerosol chemistry at C180 spatial resolution ( ∼ 0.5° × 0.625°) or finer become routinely feasible.</p>https://www.geosci-model-dev.net/11/2941/2018/gmd-11-2941-2018.pdf