Microstructural Study of a Mg–Zn–Zr Alloy Hot Compressed at a High Strain Rate

Understanding the correlation of plasticity with deformation and dynamic recrystallization (DRX) behaviors, in magnesium (Mg) alloys deformed under high-strain-rate conditions, is increasingly important for wrought Mg processing. In the present study, a ZK30 (Mg-2.61%Zn-0.66%Zr by weight percent (wt...

Full description

Bibliographic Details
Main Authors: Jing You, Yingjie Huang, Chuming Liu, Hongyi Zhan, Lixin Huang, Guang Zeng
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/10/2348
Description
Summary:Understanding the correlation of plasticity with deformation and dynamic recrystallization (DRX) behaviors, in magnesium (Mg) alloys deformed under high-strain-rate conditions, is increasingly important for wrought Mg processing. In the present study, a ZK30 (Mg-2.61%Zn-0.66%Zr by weight percent (wt.%)) alloy in the as-forged state was hot compressed to various strain levels at a temperature of 350 °C and a strain rate of 10 s<sup>−1</sup>. Heterogeneous deformation and dynamic recrystallization (DRX) behaviors of the complicated microstructures in the deformed samples were analyzed via a grain-partitioning approach based on intra-grain misorientation analysis from electron back-scattered diffraction (EBSD). The ZK30 alloy showed excellent formability, remaining intact at a true strain of −1.11. Continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) via grain boundary corrugation/bulging are the dominant mechanisms for the relaxation of strain energy during hot compression. Initial Zr-rich coarse grains undertook a significant portion of the plastic strain as the compression progressed, reflected by the increased misorientations within their interior and marked change in their aspect ratios. The results indicate that the excellent plasticity of the as-forged ZK30 alloy can be attributed to the operative CDRX mechanisms and the reduced deformation anisotropy of Zr-rich coarse grains containing Zn–Zr nano–precipitates.
ISSN:1996-1944