NUMERICAL COMPUTATION OF ELECTRIC FIELDS IN PRESENCE OF CURVILINEAR INTERFACE BETWEEN CONDUCTIVE AND NON-CONDUCTIVE MEDIA

Purpose. To elaborate a method of electric field numerical calculation in systems with curved boundaries between conductive and non-conductive mediums at final volume method usage and application of the rectangular grids. Methodology. At electric field calculation in quasi-stationary approximation,...

Full description

Bibliographic Details
Main Authors: E.I. Sokol, M.M. Rezinkina, E.V. Sosina, O.G. Gryb
Format: Article
Language:English
Published: National Technical University "Kharkiv Polytechnic Institute" 2016-03-01
Series:Електротехніка і електромеханіка
Subjects:
Online Access:http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.08/58106
Description
Summary:Purpose. To elaborate a method of electric field numerical calculation in systems with curved boundaries between conductive and non-conductive mediums at final volume method usage and application of the rectangular grids. Methodology. At electric field calculation in quasi-stationary approximation, potential of the whole conductive object (rod) is constant. At final difference scheme writing, presence of the curved part of the boundary between conducting and non-conducting media has been taking into account as follows. It was supposed that curved section complements the closed loop on which integration of the solvable equation is done instead of a straight section which extends within a conducting medium. Usage of this approach allows taking into account square of the curved sections of the boundary and distance between surface of non-conductive medium and nearest nodes of the computational grid. Results. Dependence of the maximum electric field intensity on the height and radius of curvature peaks rods has been got with the help of calculations. As a result, a polynomial approximation for the analytical expression of the external electric field intensity, upon which application to the conductive object of a certain height and radius of curvature of its top, corona discharges will develop.
ISSN:2074-272X
2309-3404