Cetuximab-Induced MET Activation Acts as a Novel Resistance Mechanism in Colon Cancer Cells

Aberrant MET expression and hepatocyte growth factor (HGF) signaling are implicated in promoting resistance to targeted agents; however, the induced MET activation by epidermal growth factor receptor (EGFR) inhibitors mediating resistance to targeted therapy remains elusive. In this study, we identi...

Full description

Bibliographic Details
Main Authors: Na Song, Shizhou Liu, Jingdong Zhang, Jing Liu, Ling Xu, Yunpeng Liu, Xiujuan Qu
Format: Article
Language:English
Published: MDPI AG 2014-04-01
Series:International Journal of Molecular Sciences
Subjects:
MET
SRC
Online Access:http://www.mdpi.com/1422-0067/15/4/5838
Description
Summary:Aberrant MET expression and hepatocyte growth factor (HGF) signaling are implicated in promoting resistance to targeted agents; however, the induced MET activation by epidermal growth factor receptor (EGFR) inhibitors mediating resistance to targeted therapy remains elusive. In this study, we identified that cetuximab-induced MET activation contributed to cetuximab resistance in Caco-2 colon cancer cells. MET inhibition or knockdown sensitized Caco-2 cells to cetuximab-mediated growth inhibition. Additionally, SRC activation promoted cetuximab resistance by interacting with MET. Pretreatment with SRC inhibitors abolished cetuximab-mediated MET activation and rendered Caco-2 cells sensitive to cetuximab. Notably, cetuximab induced MET/SRC/EGFR complex formation. MET inhibitor or SRC inhibitor suppressed phosphorylation of MET and SRC in the complex, and MET inhibitor singly led to disruption of complex formation. These results implicate alternative targeting of MET or SRC as rational strategies for reversing cetuximab resistance in colon cancer.
ISSN:1422-0067