Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand
Abstract Background Improving plant water use efficiency (WUE) is a major target for improving crop yield resilience to adverse climate change. Identifying genetic variation in WUE usually relies on instantaneous measurements of photosynthesis (An) and transpiration (Tr), or integrative measurements...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-11-01
|
Series: | Plant Methods |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13007-018-0357-9 |
id |
doaj-7324ed4365174578b5a3da27cca4c49a |
---|---|
record_format |
Article |
spelling |
doaj-7324ed4365174578b5a3da27cca4c49a2020-11-25T02:44:57ZengBMCPlant Methods1746-48112018-11-0114111310.1186/s13007-018-0357-9Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demandIván Jauregui0Shane A. Rothwell1Samuel H. Taylor2Martin A. J. Parry3Elizabete Carmo-Silva4Ian C. Dodd5Lancaster Environment Centre, Lancaster UniversityLancaster Environment Centre, Lancaster UniversityLancaster Environment Centre, Lancaster UniversityLancaster Environment Centre, Lancaster UniversityLancaster Environment Centre, Lancaster UniversityLancaster Environment Centre, Lancaster UniversityAbstract Background Improving plant water use efficiency (WUE) is a major target for improving crop yield resilience to adverse climate change. Identifying genetic variation in WUE usually relies on instantaneous measurements of photosynthesis (An) and transpiration (Tr), or integrative measurements of carbon isotope discrimination, at the leaf level. However, leaf gas exchange measurements alone do not adequately represent whole plant responses, especially if evaporative demand around the plant changes. Results Here we describe a whole plant gas exchange system that can rapidly alter evaporative demand when measuring An, Tr and intrinsic WUE (iWUE) and identify genetic variation in this response. An was not limited by VPD under steady-state conditions but some wheat cultivars restricted Tr under high evaporative demand, thereby improving iWUE. These changes may be ABA-dependent, since the barley ABA-deficient mutant (Az34) failed to restrict Tr under high evaporative demand. Despite higher Tr, Az34 showed lower An than wild-type (WT) barley because of limitations in Rubisco carboxylation activity. Tr and An of Az34 were more sensitive than WT barley to exogenous spraying with ABA, which restricted photosynthesis via substrate limitation and decreasing Rubisco activation. Conclusions Examining whole plant gas exchange responses to altered VPD can identify genetic variation in whole plant iWUE, and facilitate an understanding of the underlying mechanism(s).http://link.springer.com/article/10.1186/s13007-018-0357-9PhotosynthesisTranspirationWater use efficiencyVPDABA |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Iván Jauregui Shane A. Rothwell Samuel H. Taylor Martin A. J. Parry Elizabete Carmo-Silva Ian C. Dodd |
spellingShingle |
Iván Jauregui Shane A. Rothwell Samuel H. Taylor Martin A. J. Parry Elizabete Carmo-Silva Ian C. Dodd Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand Plant Methods Photosynthesis Transpiration Water use efficiency VPD ABA |
author_facet |
Iván Jauregui Shane A. Rothwell Samuel H. Taylor Martin A. J. Parry Elizabete Carmo-Silva Ian C. Dodd |
author_sort |
Iván Jauregui |
title |
Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
title_short |
Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
title_full |
Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
title_fullStr |
Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
title_full_unstemmed |
Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
title_sort |
whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand |
publisher |
BMC |
series |
Plant Methods |
issn |
1746-4811 |
publishDate |
2018-11-01 |
description |
Abstract Background Improving plant water use efficiency (WUE) is a major target for improving crop yield resilience to adverse climate change. Identifying genetic variation in WUE usually relies on instantaneous measurements of photosynthesis (An) and transpiration (Tr), or integrative measurements of carbon isotope discrimination, at the leaf level. However, leaf gas exchange measurements alone do not adequately represent whole plant responses, especially if evaporative demand around the plant changes. Results Here we describe a whole plant gas exchange system that can rapidly alter evaporative demand when measuring An, Tr and intrinsic WUE (iWUE) and identify genetic variation in this response. An was not limited by VPD under steady-state conditions but some wheat cultivars restricted Tr under high evaporative demand, thereby improving iWUE. These changes may be ABA-dependent, since the barley ABA-deficient mutant (Az34) failed to restrict Tr under high evaporative demand. Despite higher Tr, Az34 showed lower An than wild-type (WT) barley because of limitations in Rubisco carboxylation activity. Tr and An of Az34 were more sensitive than WT barley to exogenous spraying with ABA, which restricted photosynthesis via substrate limitation and decreasing Rubisco activation. Conclusions Examining whole plant gas exchange responses to altered VPD can identify genetic variation in whole plant iWUE, and facilitate an understanding of the underlying mechanism(s). |
topic |
Photosynthesis Transpiration Water use efficiency VPD ABA |
url |
http://link.springer.com/article/10.1186/s13007-018-0357-9 |
work_keys_str_mv |
AT ivanjauregui wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand AT shanearothwell wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand AT samuelhtaylor wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand AT martinajparry wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand AT elizabetecarmosilva wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand AT iancdodd wholeplantchambertoexaminesensitivityofcerealgasexchangetochangesinevaporativedemand |
_version_ |
1724764933032247296 |