G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle

Objective: Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investi...

Full description

Bibliographic Details
Main Authors: Claire Laurens, Pierre-Marie Badin, Katie Louche, Aline Mairal, Geneviève Tavernier, André Marette, Angelo Tremblay, S. John Weisnagel, Denis R. Joanisse, Dominique Langin, Virginie Bourlier, Cedric Moro
Format: Article
Language:English
Published: Elsevier 2016-07-01
Series:Molecular Metabolism
Online Access:http://www.sciencedirect.com/science/article/pii/S2212877816300217
id doaj-733711b7f0b04ae3ba2a921482a6034d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Claire Laurens
Pierre-Marie Badin
Katie Louche
Aline Mairal
Geneviève Tavernier
André Marette
Angelo Tremblay
S. John Weisnagel
Denis R. Joanisse
Dominique Langin
Virginie Bourlier
Cedric Moro
spellingShingle Claire Laurens
Pierre-Marie Badin
Katie Louche
Aline Mairal
Geneviève Tavernier
André Marette
Angelo Tremblay
S. John Weisnagel
Denis R. Joanisse
Dominique Langin
Virginie Bourlier
Cedric Moro
G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
Molecular Metabolism
author_facet Claire Laurens
Pierre-Marie Badin
Katie Louche
Aline Mairal
Geneviève Tavernier
André Marette
Angelo Tremblay
S. John Weisnagel
Denis R. Joanisse
Dominique Langin
Virginie Bourlier
Cedric Moro
author_sort Claire Laurens
title G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
title_short G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
title_full G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
title_fullStr G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
title_full_unstemmed G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
title_sort g0/g1 switch gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle
publisher Elsevier
series Molecular Metabolism
issn 2212-8778
publishDate 2016-07-01
description Objective: Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. Methods: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. Results: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (−68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. Conclusion: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism. Keywords: Lipid metabolism, Skeletal muscle, Lipolysis, Adipose triglyceride lipase, Oxidative metabolism
url http://www.sciencedirect.com/science/article/pii/S2212877816300217
work_keys_str_mv AT clairelaurens g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT pierremariebadin g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT katielouche g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT alinemairal g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT genevievetavernier g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT andremarette g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT angelotremblay g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT sjohnweisnagel g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT denisrjoanisse g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT dominiquelangin g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT virginiebourlier g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
AT cedricmoro g0g1switchgene2controlsadiposetriglyceridelipaseactivityandlipidmetabolisminskeletalmuscle
_version_ 1725352993900986368
spelling doaj-733711b7f0b04ae3ba2a921482a6034d2020-11-25T00:24:15ZengElsevierMolecular Metabolism2212-87782016-07-0157527537G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscleClaire Laurens0Pierre-Marie Badin1Katie Louche2Aline Mairal3Geneviève Tavernier4André Marette5Angelo Tremblay6S. John Weisnagel7Denis R. Joanisse8Dominique Langin9Virginie Bourlier10Cedric Moro11INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceDepartment of Medicine, Canada; Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, CanadaDepartment of Kinesiology, Canada; Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, CanadaCHU-CHUQ, Laval University, Quebec City, CanadaDepartment of Kinesiology, Canada; Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, CanadaINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, FranceINSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Corresponding author. Inserm UMR1048, Institute of Metabolic and Cardiovascular Diseases, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France. Tel.: +33 561 32 5626; fax: +33 561 32 5623.Objective: Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. Methods: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. Results: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (−68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. Conclusion: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism. Keywords: Lipid metabolism, Skeletal muscle, Lipolysis, Adipose triglyceride lipase, Oxidative metabolismhttp://www.sciencedirect.com/science/article/pii/S2212877816300217