A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome

Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signa...

Full description

Bibliographic Details
Main Authors: Nathan Ing, Fangjin Huang, Andrew Conley, Sungyong You, Zhaoxuan Ma, Sergey Klimov, Chisato Ohe, Xiaopu Yuan, Mahul B. Amin, Robert Figlin, Arkadiusz Gertych, Beatrice S. Knudsen
Format: Article
Language:English
Published: Nature Publishing Group 2017-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-13196-4
id doaj-734bffa0c8884685a89d36929e58ac7d
record_format Article
spelling doaj-734bffa0c8884685a89d36929e58ac7d2020-12-08T02:24:04ZengNature Publishing GroupScientific Reports2045-23222017-10-017111010.1038/s41598-017-13196-4A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcomeNathan Ing0Fangjin Huang1Andrew Conley2Sungyong You3Zhaoxuan Ma4Sergey Klimov5Chisato Ohe6Xiaopu Yuan7Mahul B. Amin8Robert Figlin9Arkadiusz Gertych10Beatrice S. Knudsen11Department of Surgery, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterDepartment of Surgery, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterDepartment of Pathology, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterDepartment of Pathology, Cedars Sinai Medical CenterSamuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical CenterDepartment of Surgery, Cedars Sinai Medical CenterDepartment of Biomedical Sciences, Cedars Sinai Medical CenterAbstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The trained algorithms classify endothelial cells and generate a vascular area mask (VAM) in H&E micrographs of clear cell renal cell carcinoma (ccRCC) cases from The Cancer Genome Atlas (TCGA). Quantification of VAMs led to the discovery of 9 vascular features (9VF) that predicted disease-free-survival in a discovery cohort (n = 64, HR = 2.3). Correlation analysis and information gain identified a 14 gene expression signature related to the 9VF’s. Two generalized linear models with elastic net regularization (14VF and 14GT), based on the 14 genes, separated independent cohorts of up to 301 cases into good and poor disease-free survival groups (14VF HR = 2.4, 14GT HR = 3.33). For the first time, we successfully applied digital image analysis and targeted machine learning to develop prognostic, morphology-based, gene expression signatures from the vascular architecture. This novel morphogenomic approach has the potential to improve previous methods for biomarker development.https://doi.org/10.1038/s41598-017-13196-4
collection DOAJ
language English
format Article
sources DOAJ
author Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
spellingShingle Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Scientific Reports
author_facet Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
author_sort Nathan Ing
title A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_short A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_full A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_fullStr A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_full_unstemmed A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_sort novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-10-01
description Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The trained algorithms classify endothelial cells and generate a vascular area mask (VAM) in H&E micrographs of clear cell renal cell carcinoma (ccRCC) cases from The Cancer Genome Atlas (TCGA). Quantification of VAMs led to the discovery of 9 vascular features (9VF) that predicted disease-free-survival in a discovery cohort (n = 64, HR = 2.3). Correlation analysis and information gain identified a 14 gene expression signature related to the 9VF’s. Two generalized linear models with elastic net regularization (14VF and 14GT), based on the 14 genes, separated independent cohorts of up to 301 cases into good and poor disease-free survival groups (14VF HR = 2.4, 14GT HR = 3.33). For the first time, we successfully applied digital image analysis and targeted machine learning to develop prognostic, morphology-based, gene expression signatures from the vascular architecture. This novel morphogenomic approach has the potential to improve previous methods for biomarker development.
url https://doi.org/10.1038/s41598-017-13196-4
work_keys_str_mv AT nathaning anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT fangjinhuang anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT andrewconley anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sungyongyou anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT zhaoxuanma anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sergeyklimov anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT chisatoohe anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT xiaopuyuan anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT mahulbamin anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT robertfiglin anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT arkadiuszgertych anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT beatricesknudsen anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT nathaning novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT fangjinhuang novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT andrewconley novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sungyongyou novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT zhaoxuanma novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sergeyklimov novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT chisatoohe novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT xiaopuyuan novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT mahulbamin novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT robertfiglin novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT arkadiuszgertych novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT beatricesknudsen novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
_version_ 1724393850051493888