Modelling microwave heating of an oil palm mesocarp

An oil palm mill often uses steam in sterilization and fruit detachment processes. Consequently, a large amount of wastewater is produced. To reduce the wastewater, microwave (MW) heating of oil palm fruits has been studied and positive results were reported in open literature. Nevertheless, MW heat...

Full description

Bibliographic Details
Main Authors: Law Ming, Chang Jessie
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201824001017
Description
Summary:An oil palm mill often uses steam in sterilization and fruit detachment processes. Consequently, a large amount of wastewater is produced. To reduce the wastewater, microwave (MW) heating of oil palm fruits has been studied and positive results were reported in open literature. Nevertheless, MW heating of oil palm fruits requires proper control to avoid overheating, which deteriorates the oil quality. MW heating efficiency depends not only on the electromagnetic strength, but also on the complex permittivity of oil palm fruits. This study reports the MW heating model of an oil palm mesocarp. The three-dimensional model solved Maxwell’s Electromagnetic waves equation, diffusion equation of moisture content, and heat conduction equation. The model was validated with mesocarp’s experimental data of moisture content and temperatures. The electromagnetics, moisture, and temperature distributions of the mesocarp were studied. The simulation results showed that the volumeand surface-averaged temperature were similar, thus the surface temperature might be used as a good approximation to the volumetric temperature. Besides, the model also showed that radiation and convection were the main heat loss mechanisms. This validated model can be used for designing a microwave heating reactor for oil palm fruits.
ISSN:2261-236X