The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize

Phosphate-(P)-solubilizing microorganisms (PSM) are important drivers of P cycling in natural and agro-ecosystems. Their use as plant inoculants to improve P acquisition of crops has been investigated for decades. However, limited reproducibility of the expected effects, particularly under field con...

Full description

Bibliographic Details
Main Authors: Isaac Kwadwo Mpanga, Peteh Mehdi Nkebiwe, Mira Kuhlmann, Vincenza Cozzolino, Alessandro Piccolo, Jörg Geistlinger, Nils Berger, Uwe Ludewig, Günter Neumann
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/7/2/38
Description
Summary:Phosphate-(P)-solubilizing microorganisms (PSM) are important drivers of P cycling in natural and agro-ecosystems. Their use as plant inoculants to improve P acquisition of crops has been investigated for decades. However, limited reproducibility of the expected effects, particularly under field conditions, remains a major challenge. This study demonstrates that the form of nitrogen fertilization has a significant impact on the performance of various fungal and bacterial PSM inoculants in maize grown on neutral to alkaline soils with limited P availability. Under these conditions, a high soil pH-buffering capacity frequently limits the efficiency of nutrient mobilization, mediated by plant roots and microorganisms via rhizosphere acidification. In a soil pH range between 7.0 and 8.0, nitrate fertilization promoting rhizosphere alkalinisation further aggravates this problem. Accordingly, in greenhouse experiments, six strains of <i>Pseudomonas</i>, <i>Bacillus</i>, <i>Paenibacillus</i>, <i>Streptomyces</i>, and <i>Penicillium</i> with proven P-solubilizing potential, completely failed to promote P acquisition in maize grown on a calcareous Loess sub-soil pH 7.6 with nitrate fertilization and rock phosphate (Rock-P) as a sparingly soluble P source. However, after replacement of nitrate fertilization by ammonium, stabilized with the nitrification inhibitor 3,4-dimethylpyrazole-phosphate (DMPP), five out of seven investigated PSM inoculants (comprising 12 fungal and bacterial PSM strains) exerted beneficial effects on plant growth and reached up to 88% of the shoot biomass production of a control supplied with soluble triple-superphosphate (TSP). Stabilized ammonium combined with PSM-inoculants improved P acquisition (<i>Trichoderma harzianum</i> T22, <i>Pseudomonas</i> sp. DMSZ 13134), while other strains particularly stimulated root growth (<i>T. harzianum</i> OMG16, <i>Bacillus amyloliquefaciens</i> FZB42), which promoted the acquisition also of other mineral nutrients, such as N, K, and Mn. A similar effect was recorded under field conditions on an alkaline clay-loam soil pH 8.6. The combination of stabilized ammonium with a range of consortium products based on <i>T. harzianum</i> OMG16, <i>B. amyloliquefaciens</i>, micronutrients, and humic acids completely compensated the effect of a TSP fertilization on field establishment, nutrient acquisition, and yield formation in maize, while non-stabilized urea-di-ammonium phosphate fertilization was largely ineffective. These findings suggest that the efficiency of PSM-plant interactions can be influenced by the form of N fertilization, offering promising perspectives for synergistic effects with stabilized ammonium fertilizers.
ISSN:2076-2607