On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2010-09-01
|
Series: | Modelirovanie i Analiz Informacionnyh Sistem |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/1041 |
id |
doaj-73b71497c11b4c6bae8cc326dc6ecd6d |
---|---|
record_format |
Article |
spelling |
doaj-73b71497c11b4c6bae8cc326dc6ecd6d2021-07-29T08:15:17ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172010-09-011737290782On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>A. S. Snyatkov0Тверской государственный университетIn the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions.https://www.mais-journal.ru/jour/article/view/1041semenov arithmetic<i>hyperfunction</i><i>ackermann function</i> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. S. Snyatkov |
spellingShingle |
A. S. Snyatkov On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> Modelirovanie i Analiz Informacionnyh Sistem semenov arithmetic <i>hyperfunction</i> <i>ackermann function</i> |
author_facet |
A. S. Snyatkov |
author_sort |
A. S. Snyatkov |
title |
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_short |
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_full |
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_fullStr |
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_full_unstemmed |
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_sort |
on decidability of the theory <i>th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
publisher |
Yaroslavl State University |
series |
Modelirovanie i Analiz Informacionnyh Sistem |
issn |
1818-1015 2313-5417 |
publishDate |
2010-09-01 |
description |
In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions. |
topic |
semenov arithmetic <i>hyperfunction</i> <i>ackermann function</i> |
url |
https://www.mais-journal.ru/jour/article/view/1041 |
work_keys_str_mv |
AT assnyatkov ondecidabilityofthetheoryithu01fisubiisubsubi0isubiiifisubiisubsubinisubiiii |
_version_ |
1721256576497483776 |