Handlebody phases and the polyhedrality of the holographic entropy cone

Abstract The notion of a holographic entropy cone has recently been introduced and it has been proven that this cone is polyhedral. However, the original definition was fully geometric and did not strictly require a holographic duality. We introduce a new definition of the cone, insisting that the g...

Full description

Bibliographic Details
Main Authors: Donald Marolf, Massimiliano Rota, Jason Wien
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2017)069
Description
Summary:Abstract The notion of a holographic entropy cone has recently been introduced and it has been proven that this cone is polyhedral. However, the original definition was fully geometric and did not strictly require a holographic duality. We introduce a new definition of the cone, insisting that the geometries used for its construction should be dual to states of a CFT. As a result, the polyhedrality of this holographic cone does not immediately follow. A numerical evaluation of the Euclidean action for the geometries that realize extremal rays of the original cone indicates that these are subdominant bulk phases of natural path integrals. The result challenges the expectation that such geometries are in fact dual to CFT states.
ISSN:1029-8479