Beyond Landauer Erasure
In thermodynamics, one considers thermal systems and the maximization of entropy subject to the conservation of energy. A consequence is Landauer’s erasure principle, which states that the erasure of one bit of information requires a minimum energy cost equal to kT ln(2), where T is the temperature...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-11-01
|
Series: | Entropy |
Subjects: | |
Online Access: | http://www.mdpi.com/1099-4300/15/11/4956 |
id |
doaj-74678825d13b48ae9cb8e9e2e2395aa0 |
---|---|
record_format |
Article |
spelling |
doaj-74678825d13b48ae9cb8e9e2e2395aa02020-11-24T21:21:12ZengMDPI AGEntropy1099-43002013-11-0115114956496810.3390/e15114956Beyond Landauer ErasureStephen M. BarnettJoan A. VaccaroIn thermodynamics, one considers thermal systems and the maximization of entropy subject to the conservation of energy. A consequence is Landauer’s erasure principle, which states that the erasure of one bit of information requires a minimum energy cost equal to kT ln(2), where T is the temperature of a thermal reservoir used in the process and k is Boltzmann’s constant. Jaynes, however, argued that the maximum entropy principle could be applied to any number of conserved quantities, which would suggest that information erasure may have alternative costs. Indeed, we showed recently that by using a reservoir comprising energy degenerate spins and subject to conservation of angular momentum, the cost of information erasure is in terms of angular momentum rather than energy. Here, we extend this analysis and derive the minimum cost of information erasure for systems where different conservation laws operate. We find that, for each conserved quantity, the minimum resource needed to erase one bit of memory is λ-1 ln(2), where λ is related to the average value of the conserved quantity. The costs of erasure depend, fundamentally, on both the nature of the physical memory element and the reservoir with which it is coupled.http://www.mdpi.com/1099-4300/15/11/4956thermodynamicsinformation erasuremaximum entropy principlespin reservoir |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stephen M. Barnett Joan A. Vaccaro |
spellingShingle |
Stephen M. Barnett Joan A. Vaccaro Beyond Landauer Erasure Entropy thermodynamics information erasure maximum entropy principle spin reservoir |
author_facet |
Stephen M. Barnett Joan A. Vaccaro |
author_sort |
Stephen M. Barnett |
title |
Beyond Landauer Erasure |
title_short |
Beyond Landauer Erasure |
title_full |
Beyond Landauer Erasure |
title_fullStr |
Beyond Landauer Erasure |
title_full_unstemmed |
Beyond Landauer Erasure |
title_sort |
beyond landauer erasure |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2013-11-01 |
description |
In thermodynamics, one considers thermal systems and the maximization of entropy subject to the conservation of energy. A consequence is Landauer’s erasure principle, which states that the erasure of one bit of information requires a minimum energy cost equal to kT ln(2), where T is the temperature of a thermal reservoir used in the process and k is Boltzmann’s constant. Jaynes, however, argued that the maximum entropy principle could be applied to any number of conserved quantities, which would suggest that information erasure may have alternative costs. Indeed, we showed recently that by using a reservoir comprising energy degenerate spins and subject to conservation of angular momentum, the cost of information erasure is in terms of angular momentum rather than energy. Here, we extend this analysis and derive the minimum cost of information erasure for systems where different conservation laws operate. We find that, for each conserved quantity, the minimum resource needed to erase one bit of memory is λ-1 ln(2), where λ is related to the average value of the conserved quantity. The costs of erasure depend, fundamentally, on both the nature of the physical memory element and the reservoir with which it is coupled. |
topic |
thermodynamics information erasure maximum entropy principle spin reservoir |
url |
http://www.mdpi.com/1099-4300/15/11/4956 |
work_keys_str_mv |
AT stephenmbarnett beyondlandauererasure AT joanavaccaro beyondlandauererasure |
_version_ |
1726000419619995648 |