Summary: | Electroadhesion is an adhesion mechanism applying high voltage to generate adhesive force. The electroadhesion system can generate and maintain adhesive force on almost any object, solving the challenge of handling irregular and rough surface objects as well as fragile objects. The electroadhesive pad is a key component of the electroadhesion system for interacting with the target object. By optimizing the design of the electroadhesive pad, the electroadhesion system provides greater adhesive force and achieves better adhesion. In this study, a multiparameter theoretical model including the dimensional parameters of the electroadhesive pad has been developed and an optimization design strategy for specific applications has been proposed. By considering both the key parameters influencing the electroadhesive force and the practical constraints of equipment and materials, this strategy allows the optimization design methods of electroadhesive pads to be further extended to applications. The influence of each parameter on the optimization results has been evaluated by calculating and comparing the optimized values under different conditions, and it has been demonstrated that the size of the pad also has an effect on the optimized values. A 3D simulation model has been established to simulate the effect of electroadhesion, and the accuracy of the optimization results has been verified by comparing the theoretical and simulation results. An application example has been performed and the results have shown that the structure of the electroadhesive pad can be optimized by using this strategy, thus maximizing the generated electroadhesive force and improving the overall performance of the electroadhesion system.
|