Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation

Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present stud...

Full description

Bibliographic Details
Main Authors: Dong-Kyu Kim, Ki-Jung Kweon, Pyungsoo Kim, Hee-Jung Kim, Sung-Soo Kim, Nak-Won Sohn, Sungho Maeng, Jung-Won Shin
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/22/1/122
Description
Summary:Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective effect of GRg3 following SCI in rats. SCI was induced using a static compression model at vertebral thoracic level 10 for 5 min. GRg3 was administrated orally at a dose of 10 or 30 mg/kg/day for 14 days after the SCI. GRg3 (30 mg/kg) treatment markedly improved behavioral motor functions, restored lesion size, preserved motor neurons in the spinal tissue, reduced Bax expression and number of TUNEL-positive cells, and suppressed mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. GRg3 also attenuated the over-production of cyclooxygenase-2 and inducible nitric oxide synthase after SCI. Moreover, GRg3 markedly suppressed microglial activation in the spinal tissue. In conclusion, GRg3 treatment led to a remarkable recovery of motor function and a reduction in spinal tissue damage by suppressing neuronal apoptosis and inflammatory responses after SCI. These results suggest that GRg3 may be a potential therapeutic agent for the treatment of SCI.
ISSN:1420-3049