Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield

Abstract Increasing the efficiency of current forage breeding programs through adoption of new technologies, such as genomic selection (GS) and phenomics (Ph), is challenging without proof of concept demonstrating cost effective genetic gain (∆G). This paper uses decision support software DeltaGen (...

Full description

Bibliographic Details
Main Authors: M. Z. Z. Jahufer, Sai Krishna Arojju, Marty J. Faville, Kioumars Ghamkhar, Dongwen Luo, Vivi Arief, Wen-Hsi Yang, Mingzhu Sun, Ian H. DeLacy, Andrew G. Griffiths, Colin Eady, Will Clayton, Alan V. Stewart, Richard M. George, Valerio Hoyos-Villegas, Kaye E. Basford, Brent Barrett
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-92537-w
id doaj-7505f85100bd48b186e5f6372f6297f0
record_format Article
spelling doaj-7505f85100bd48b186e5f6372f6297f02021-06-27T11:30:46ZengNature Publishing GroupScientific Reports2045-23222021-06-0111111810.1038/s41598-021-92537-wDeterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yieldM. Z. Z. Jahufer0Sai Krishna Arojju1Marty J. Faville2Kioumars Ghamkhar3Dongwen Luo4Vivi Arief5Wen-Hsi Yang6Mingzhu Sun7Ian H. DeLacy8Andrew G. Griffiths9Colin Eady10Will Clayton11Alan V. Stewart12Richard M. George13Valerio Hoyos-Villegas14Kaye E. Basford15Brent Barrett16Grasslands Research Centre, AgResearch LtdGrasslands Research Centre, AgResearch LtdGrasslands Research Centre, AgResearch LtdGrasslands Research Centre, AgResearch LtdGrasslands Research Centre, AgResearch LtdSchool of Agriculture and Food Sciences, Faculty of Science, The University of QueenslandSchool of Agriculture and Food Sciences, Faculty of Science, The University of QueenslandThe Centre for Complex Analytics and Visualisation, AutoStat InstituteSchool of Agriculture and Food Sciences, Faculty of Science, The University of QueenslandGrasslands Research Centre, AgResearch LtdBarenbrug NZ LtdBarenbrug NZ LtdKimihia Research Centre, PGG Wrightson Seeds LtdKimihia Research Centre, PGG Wrightson Seeds LtdDepartment of Plant Science, McGill UniversitySchool of Agriculture and Food Sciences, Faculty of Science, The University of QueenslandGrasslands Research Centre, AgResearch LtdAbstract Increasing the efficiency of current forage breeding programs through adoption of new technologies, such as genomic selection (GS) and phenomics (Ph), is challenging without proof of concept demonstrating cost effective genetic gain (∆G). This paper uses decision support software DeltaGen (tactical tool) and QU-GENE (strategic tool), to model and assess relative efficiency of five breeding methods. The effect on ∆G and cost ($) of integrating GS and Ph into an among half-sib (HS) family phenotypic selection breeding strategy was investigated. Deterministic and stochastic modelling were conducted using mock data sets of 200 and 1000 perennial ryegrass HS families using year-by-season-by-location dry matter (DM) yield data and in silico generated data, respectively. Results demonstrated short (deterministic)- and long-term (stochastic) impacts of breeding strategy and integration of key technologies, GS and Ph, on ∆G. These technologies offer substantial improvements in the rate of ∆G, and in some cases improved cost-efficiency. Applying 1% within HS family GS, predicted a 6.35 and 8.10% ∆G per cycle for DM yield from the 200 HS and 1000 HS, respectively. The application of GS in both among and within HS selection provided a significant boost to total annual ∆G, even at low GS accuracy rA of 0.12. Despite some reduction in ∆G, using Ph to assess seasonal DM yield clearly demonstrated its impact by reducing cost per percentage ∆G relative to standard DM cuts. Open-source software tools, DeltaGen and QuLinePlus/QU-GENE, offer ways to model the impact of breeding methodology and technology integration under a range of breeding scenarios.https://doi.org/10.1038/s41598-021-92537-w
collection DOAJ
language English
format Article
sources DOAJ
author M. Z. Z. Jahufer
Sai Krishna Arojju
Marty J. Faville
Kioumars Ghamkhar
Dongwen Luo
Vivi Arief
Wen-Hsi Yang
Mingzhu Sun
Ian H. DeLacy
Andrew G. Griffiths
Colin Eady
Will Clayton
Alan V. Stewart
Richard M. George
Valerio Hoyos-Villegas
Kaye E. Basford
Brent Barrett
spellingShingle M. Z. Z. Jahufer
Sai Krishna Arojju
Marty J. Faville
Kioumars Ghamkhar
Dongwen Luo
Vivi Arief
Wen-Hsi Yang
Mingzhu Sun
Ian H. DeLacy
Andrew G. Griffiths
Colin Eady
Will Clayton
Alan V. Stewart
Richard M. George
Valerio Hoyos-Villegas
Kaye E. Basford
Brent Barrett
Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
Scientific Reports
author_facet M. Z. Z. Jahufer
Sai Krishna Arojju
Marty J. Faville
Kioumars Ghamkhar
Dongwen Luo
Vivi Arief
Wen-Hsi Yang
Mingzhu Sun
Ian H. DeLacy
Andrew G. Griffiths
Colin Eady
Will Clayton
Alan V. Stewart
Richard M. George
Valerio Hoyos-Villegas
Kaye E. Basford
Brent Barrett
author_sort M. Z. Z. Jahufer
title Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
title_short Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
title_full Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
title_fullStr Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
title_full_unstemmed Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
title_sort deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2021-06-01
description Abstract Increasing the efficiency of current forage breeding programs through adoption of new technologies, such as genomic selection (GS) and phenomics (Ph), is challenging without proof of concept demonstrating cost effective genetic gain (∆G). This paper uses decision support software DeltaGen (tactical tool) and QU-GENE (strategic tool), to model and assess relative efficiency of five breeding methods. The effect on ∆G and cost ($) of integrating GS and Ph into an among half-sib (HS) family phenotypic selection breeding strategy was investigated. Deterministic and stochastic modelling were conducted using mock data sets of 200 and 1000 perennial ryegrass HS families using year-by-season-by-location dry matter (DM) yield data and in silico generated data, respectively. Results demonstrated short (deterministic)- and long-term (stochastic) impacts of breeding strategy and integration of key technologies, GS and Ph, on ∆G. These technologies offer substantial improvements in the rate of ∆G, and in some cases improved cost-efficiency. Applying 1% within HS family GS, predicted a 6.35 and 8.10% ∆G per cycle for DM yield from the 200 HS and 1000 HS, respectively. The application of GS in both among and within HS selection provided a significant boost to total annual ∆G, even at low GS accuracy rA of 0.12. Despite some reduction in ∆G, using Ph to assess seasonal DM yield clearly demonstrated its impact by reducing cost per percentage ∆G relative to standard DM cuts. Open-source software tools, DeltaGen and QuLinePlus/QU-GENE, offer ways to model the impact of breeding methodology and technology integration under a range of breeding scenarios.
url https://doi.org/10.1038/s41598-021-92537-w
work_keys_str_mv AT mzzjahufer deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT saikrishnaarojju deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT martyjfaville deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT kioumarsghamkhar deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT dongwenluo deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT viviarief deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT wenhsiyang deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT mingzhusun deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT ianhdelacy deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT andrewggriffiths deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT colineady deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT willclayton deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT alanvstewart deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT richardmgeorge deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT valeriohoyosvillegas deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT kayeebasford deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
AT brentbarrett deterministicandstochasticmodellingofimpactsfromgenomicselectionandphenomicsongeneticgainforperennialryegrassdrymatteryield
_version_ 1721357774057635840