Some results on deep holes of generalized projective Reed-Solomon codes

Let $l\ge 1$ be an integer and $a_1,\ldots,a_l$ be arbitrarily given $l$ distinct elements of the finite field ${\bf F}_q$ of $q$ elements with the odd prime number $p$ as its characteristic. Let $D={\bf F}_q\backslash\{a_1,\ldots,a_l\}$ and $k$ be an integer such that $2\le k\le q-l-1$. For any $f(...

Full description

Bibliographic Details
Main Authors: Xiaofan Xu, Yongchao Xu
Format: Article
Language:English
Published: AIMS Press 2019-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2019.2.176/fulltext.html
id doaj-75b5dc504b104ebda1a06e269052a542
record_format Article
spelling doaj-75b5dc504b104ebda1a06e269052a5422020-11-24T21:57:37ZengAIMS PressAIMS Mathematics2473-69882019-02-014217619210.3934/math.2019.2.176Some results on deep holes of generalized projective Reed-Solomon codesXiaofan Xu0Yongchao Xu11 Department of Mathematics, Sichuan Tourism University, Chengdu 610100, P.R. China2 Mathematical College, Sichuan University, Chengdu 610064, P.R. ChinaLet $l\ge 1$ be an integer and $a_1,\ldots,a_l$ be arbitrarily given $l$ distinct elements of the finite field ${\bf F}_q$ of $q$ elements with the odd prime number $p$ as its characteristic. Let $D={\bf F}_q\backslash\{a_1,\ldots,a_l\}$ and $k$ be an integer such that $2\le k\le q-l-1$. For any $f(x)\in {\bf F}_q[x]$, we let $f(D)=(f(y_1),\ldots,f(y_{q-l}))$ if $D=\{y_1, ..., y_{q-l}\}$ and $c_{k-1}(f(x))$ be the coefficient of $x^{k-1}$ of $f(x)$. In this paper, by using Dür's theorem on the relation between the covering radius and minimum distance of the generalized projective Reed-Solomon code ${\rm GPRS}_q(D, k)$, we show that if $u(x)\in {\bf F}_q[x]$ with $\deg u(x)=k$, then the received word $(u(D), c_{k-1}(u(x)))$ is a deep hole of ${\rm GPRS}_q(D, k)$ if and only if $\sum\limits_{y\in I}y\ne 0$ for any subset $I\subseteq D$ with $\#(I)=k$. We show also that if $j$ is an integer with $1\leq j\leq l$ and $u_j(x):= \lambda_j(x-a_j)^{q-2}+\nu_j x^{k-1}+f_{\leq k-2}^{(j)}(x)$ with $\lambda_j\in {\bf F}_q^*$, $\nu_j\in {\bf F}_q$ and $f_{\leq{k-2}}^{(j)}(x)\in{\bf F}_q[x]$ being a polynomial of degree at most $k-2$, then $(u_j(D), c_{k-1}(u_j(x)))$ is a deep hole of ${\rm GPRS}_q(D, k)$ if and only if $\binom{q-2}{k-1}(-a_j)^{q-1-k}\prod\limits_{y\in I}(a_j-y)+e\ne 0$ for any subset $I\subseteq D$ with $\#(I)=k$, where $e$ is the identity of ${\bf F}_q^*$. Furthermore, $(u({\bf F}_q^*), c_{k-1}(u(x)))$ is not a deep hole of the primitive projective Reed-Solomon code ${\rm PPRS}_q({\bf F}_q^*, k)$ if $\deg u(x)=k$, and $(u({\bf F}_q^*),\delta)$ is a deep hole of ${\rm PPRS}_q({\bf F}_q^*, k)$ if $u(x)=\lambda x^{q-2}+\delta x^{k-1}+f_{\leq{k-2}}(x)$ with $\lambda\in {\bf F}_q^*$ and $\delta\in {\bf F}_q$.https://www.aimspress.com/article/10.3934/math.2019.2.176/fulltext.htmlgeneralized projective Reed-Solomon codesMDS codesdeep holesLagrange interpolation polynomial
collection DOAJ
language English
format Article
sources DOAJ
author Xiaofan Xu
Yongchao Xu
spellingShingle Xiaofan Xu
Yongchao Xu
Some results on deep holes of generalized projective Reed-Solomon codes
AIMS Mathematics
generalized projective Reed-Solomon codes
MDS codes
deep holes
Lagrange interpolation polynomial
author_facet Xiaofan Xu
Yongchao Xu
author_sort Xiaofan Xu
title Some results on deep holes of generalized projective Reed-Solomon codes
title_short Some results on deep holes of generalized projective Reed-Solomon codes
title_full Some results on deep holes of generalized projective Reed-Solomon codes
title_fullStr Some results on deep holes of generalized projective Reed-Solomon codes
title_full_unstemmed Some results on deep holes of generalized projective Reed-Solomon codes
title_sort some results on deep holes of generalized projective reed-solomon codes
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2019-02-01
description Let $l\ge 1$ be an integer and $a_1,\ldots,a_l$ be arbitrarily given $l$ distinct elements of the finite field ${\bf F}_q$ of $q$ elements with the odd prime number $p$ as its characteristic. Let $D={\bf F}_q\backslash\{a_1,\ldots,a_l\}$ and $k$ be an integer such that $2\le k\le q-l-1$. For any $f(x)\in {\bf F}_q[x]$, we let $f(D)=(f(y_1),\ldots,f(y_{q-l}))$ if $D=\{y_1, ..., y_{q-l}\}$ and $c_{k-1}(f(x))$ be the coefficient of $x^{k-1}$ of $f(x)$. In this paper, by using Dür's theorem on the relation between the covering radius and minimum distance of the generalized projective Reed-Solomon code ${\rm GPRS}_q(D, k)$, we show that if $u(x)\in {\bf F}_q[x]$ with $\deg u(x)=k$, then the received word $(u(D), c_{k-1}(u(x)))$ is a deep hole of ${\rm GPRS}_q(D, k)$ if and only if $\sum\limits_{y\in I}y\ne 0$ for any subset $I\subseteq D$ with $\#(I)=k$. We show also that if $j$ is an integer with $1\leq j\leq l$ and $u_j(x):= \lambda_j(x-a_j)^{q-2}+\nu_j x^{k-1}+f_{\leq k-2}^{(j)}(x)$ with $\lambda_j\in {\bf F}_q^*$, $\nu_j\in {\bf F}_q$ and $f_{\leq{k-2}}^{(j)}(x)\in{\bf F}_q[x]$ being a polynomial of degree at most $k-2$, then $(u_j(D), c_{k-1}(u_j(x)))$ is a deep hole of ${\rm GPRS}_q(D, k)$ if and only if $\binom{q-2}{k-1}(-a_j)^{q-1-k}\prod\limits_{y\in I}(a_j-y)+e\ne 0$ for any subset $I\subseteq D$ with $\#(I)=k$, where $e$ is the identity of ${\bf F}_q^*$. Furthermore, $(u({\bf F}_q^*), c_{k-1}(u(x)))$ is not a deep hole of the primitive projective Reed-Solomon code ${\rm PPRS}_q({\bf F}_q^*, k)$ if $\deg u(x)=k$, and $(u({\bf F}_q^*),\delta)$ is a deep hole of ${\rm PPRS}_q({\bf F}_q^*, k)$ if $u(x)=\lambda x^{q-2}+\delta x^{k-1}+f_{\leq{k-2}}(x)$ with $\lambda\in {\bf F}_q^*$ and $\delta\in {\bf F}_q$.
topic generalized projective Reed-Solomon codes
MDS codes
deep holes
Lagrange interpolation polynomial
url https://www.aimspress.com/article/10.3934/math.2019.2.176/fulltext.html
work_keys_str_mv AT xiaofanxu someresultsondeepholesofgeneralizedprojectivereedsolomoncodes
AT yongchaoxu someresultsondeepholesofgeneralizedprojectivereedsolomoncodes
_version_ 1725854546019745792