Nonlinear Effects on the Precessional Instability in Magnetized Turbulence

By means of direct numerical simulations (DNS), we study the impact of an imposed uniform magnetic field on precessing magnetohydrodynamic homogeneous turbulence with a unit magnetic Prandtl number. The base flow which can trigger the precessional instability consists of the superposition of a solid...

Full description

Bibliographic Details
Main Authors: Abdelaziz Salhi, Amor Khlifi, Claude Cambon
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/11/1/14
id doaj-76116c5c3e6b40a696fe6d7fb061eec1
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Abdelaziz Salhi
Amor Khlifi
Claude Cambon
spellingShingle Abdelaziz Salhi
Amor Khlifi
Claude Cambon
Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
Atmosphere
precession
instabilities
magnetohydrodynamics (mhd) turbulence
spectra of kinetic and magnetic energies
author_facet Abdelaziz Salhi
Amor Khlifi
Claude Cambon
author_sort Abdelaziz Salhi
title Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
title_short Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
title_full Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
title_fullStr Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
title_full_unstemmed Nonlinear Effects on the Precessional Instability in Magnetized Turbulence
title_sort nonlinear effects on the precessional instability in magnetized turbulence
publisher MDPI AG
series Atmosphere
issn 2073-4433
publishDate 2019-12-01
description By means of direct numerical simulations (DNS), we study the impact of an imposed uniform magnetic field on precessing magnetohydrodynamic homogeneous turbulence with a unit magnetic Prandtl number. The base flow which can trigger the precessional instability consists of the superposition of a solid-body rotation around the vertical (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> axis (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#937;</mo> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and a plane shear (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> viewed in a frame rotating (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>&#937;</mo> <mi>p</mi> </msub> <mrow> <mo>=</mo> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> about an axis normal to the plane of shear and to the solid-body rotation axis and under an imposed magnetic field that aligns with the solid-body rotation axis (<inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold-italic">B</mi> <mo>‖</mo> <mo mathvariant="bold">&#937;</mo> <mo>)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> While rotation rate and Poincar&#233; number are fixed, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#937;</mo> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#949;</mi> <mo>=</mo> <mn>0.17</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the <i><b>B</b></i> intensity was varied, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="4pt"></mspace> <mn>0.5</mn> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.5</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> so that the Elsasser number is about <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#923;</mo> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="4pt"></mspace> <mn>2.5</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>62.5</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> respectively. At the final computational dimensionless time, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>t</mi> <mo>=</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mi>t</mi> <mo>=</mo> <mn>67</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the Rossby number Ro is about <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> characterizing rapidly rotating flow. It is shown that the total (kinetic + magnetic) energy <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>E</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, production rate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">P</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> due the basic flow and dissipation rate (<inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">D</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> occur in two main phases associated with different flow topologies: (i) an exponential growth and (ii) nonlinear saturation during which these global quantities remain almost time independent with <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">P</mi> <mo>&#8764;</mo> <mi mathvariant="script">D</mi> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> The impact of a "strong" imposed magnetic field <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>B</mi> <mo>=</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> on large scale structures at the saturation stage is reflected by the formation of structures that look like filaments and there is no dominance of horizontal motion over the vertical (along the solid-rotation axis) one. The comparison between the spectra of kinetic energy <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> at the saturation stage reveals that, at large horizontal scales, the major contribution to <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> does not come only from the mode <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> but also from the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> mode which is the most energetic. Only at very large horizontal scales at which <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>&#8764;</mo> <msubsup> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the flow is almost two-dimensional. In the wavenumbers range <inline-formula> <math display="inline"> <semantics> <mrow> <mn>10</mn> <mo>&#8804;</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>&#8804;</mo> <mn>40</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the spectra <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> respectively follow the scaling <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>k</mi> <mo>&#10178;</mo> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>k</mi> <mo>&#10178;</mo> <mrow> <mo>&#8722;</mo> <mn>3</mn> </mrow> </msubsup> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Unlike the velocity field the magnetic field remains strongly three-dimensional for all scales since <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>≪</mo> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> At the saturation stage, the Alfv&#233;n ratio between kinetic and magnetic energies behaves like <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>k</mi> <mo>‖</mo> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>
topic precession
instabilities
magnetohydrodynamics (mhd) turbulence
spectra of kinetic and magnetic energies
url https://www.mdpi.com/2073-4433/11/1/14
work_keys_str_mv AT abdelazizsalhi nonlineareffectsontheprecessionalinstabilityinmagnetizedturbulence
AT amorkhlifi nonlineareffectsontheprecessionalinstabilityinmagnetizedturbulence
AT claudecambon nonlineareffectsontheprecessionalinstabilityinmagnetizedturbulence
_version_ 1724940197291884544
spelling doaj-76116c5c3e6b40a696fe6d7fb061eec12020-11-25T02:04:56ZengMDPI AGAtmosphere2073-44332019-12-011111410.3390/atmos11010014atmos11010014Nonlinear Effects on the Precessional Instability in Magnetized TurbulenceAbdelaziz Salhi0Amor Khlifi1Claude Cambon2Département de Physique, Faculté des sciences de Tunis, Tunis 1060, TunisiaDépartement de Physique, Faculté des sciences de Tunis, Tunis 1060, TunisiaLaboratoire de Mécanique des Fluides et d’Acoustique, Université de Lyon, UMR 5509, Ecole Centrale de Lyon, CNRS, UCBL, CEDEX, INSA F-69134 Ecully, FranceBy means of direct numerical simulations (DNS), we study the impact of an imposed uniform magnetic field on precessing magnetohydrodynamic homogeneous turbulence with a unit magnetic Prandtl number. The base flow which can trigger the precessional instability consists of the superposition of a solid-body rotation around the vertical (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> axis (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#937;</mo> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and a plane shear (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> viewed in a frame rotating (with rate <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>&#937;</mo> <mi>p</mi> </msub> <mrow> <mo>=</mo> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> about an axis normal to the plane of shear and to the solid-body rotation axis and under an imposed magnetic field that aligns with the solid-body rotation axis (<inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold-italic">B</mi> <mo>‖</mo> <mo mathvariant="bold">&#937;</mo> <mo>)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> While rotation rate and Poincar&#233; number are fixed, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#937;</mo> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#949;</mi> <mo>=</mo> <mn>0.17</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the <i><b>B</b></i> intensity was varied, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="4pt"></mspace> <mn>0.5</mn> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.5</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> so that the Elsasser number is about <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#923;</mo> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="4pt"></mspace> <mn>2.5</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>62.5</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> respectively. At the final computational dimensionless time, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>t</mi> <mo>=</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mi>t</mi> <mo>=</mo> <mn>67</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the Rossby number Ro is about <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> characterizing rapidly rotating flow. It is shown that the total (kinetic + magnetic) energy <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>E</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, production rate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">P</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> due the basic flow and dissipation rate (<inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">D</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> occur in two main phases associated with different flow topologies: (i) an exponential growth and (ii) nonlinear saturation during which these global quantities remain almost time independent with <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">P</mi> <mo>&#8764;</mo> <mi mathvariant="script">D</mi> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> The impact of a "strong" imposed magnetic field <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>B</mi> <mo>=</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> on large scale structures at the saturation stage is reflected by the formation of structures that look like filaments and there is no dominance of horizontal motion over the vertical (along the solid-rotation axis) one. The comparison between the spectra of kinetic energy <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> at the saturation stage reveals that, at large horizontal scales, the major contribution to <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> does not come only from the mode <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> but also from the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> mode which is the most energetic. Only at very large horizontal scales at which <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>&#8764;</mo> <msubsup> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the flow is almost two-dimensional. In the wavenumbers range <inline-formula> <math display="inline"> <semantics> <mrow> <mn>10</mn> <mo>&#8804;</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>&#8804;</mo> <mn>40</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the spectra <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>&#954;</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>,</mo> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> respectively follow the scaling <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>k</mi> <mo>&#10178;</mo> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>k</mi> <mo>&#10178;</mo> <mrow> <mo>&#8722;</mo> <mn>3</mn> </mrow> </msubsup> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Unlike the velocity field the magnetic field remains strongly three-dimensional for all scales since <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>≪</mo> <msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mo>&#10178;</mo> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> At the saturation stage, the Alfv&#233;n ratio between kinetic and magnetic energies behaves like <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>k</mi> <mo>‖</mo> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>k</mi> <mo>‖</mo> </msub> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>&#949;</mi> <mo>&#937;</mo> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>https://www.mdpi.com/2073-4433/11/1/14precessioninstabilitiesmagnetohydrodynamics (mhd) turbulencespectra of kinetic and magnetic energies