Casimir squared correction to the standard rotator Hamiltonian for the O(n) sigma-model in the delta-regime

Abstract In a previous paper we found that the isospin susceptibility of the O(n) sigma-model calculated in the standard rotator approximation differs from the next-to-next-to leading order chiral perturbation theory result in terms vanishing like 1/ℓ, for ℓ = L t /L → ∞ and further showed that this...

Full description

Bibliographic Details
Main Authors: F. Niedermayer, P. Weisz
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2018)070
Description
Summary:Abstract In a previous paper we found that the isospin susceptibility of the O(n) sigma-model calculated in the standard rotator approximation differs from the next-to-next-to leading order chiral perturbation theory result in terms vanishing like 1/ℓ, for ℓ = L t /L → ∞ and further showed that this deviation could be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant. Here we confront this expectation with analytic nonperturbative results on the spectrum in 2 dimensions, by Balog and Hegedüs for n = 3, 4 and by Gromov, Kazakov and Vieira for n = 4, and find good agreement in both cases. We also consider the case of 3 dimensions.
ISSN:1029-8479