Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L.) Varieties as Affected by Salt-Alkali and Phosphorus

Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P) in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any...

Full description

Bibliographic Details
Main Authors: Zhijie Tian, Jingpeng Li, Xinhua He, Xueying Jia, Fu Yang, Zhichun Wang
Format: Article
Language:English
Published: MDPI AG 2017-08-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/9/8/1461
Description
Summary:Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P) in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L.) yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4) and sensitive (Tongyu-315) rice varieties were examined under two saline-alkaline (light versus severe) soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1). The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.
ISSN:2071-1050