On the applicability of multiaxial high cycle fatigue criteria to metallic materials

A comparative study is made of the applicability of critical plane based multiaxial high cycle fatigue models to predicting the fatigue behavior of metallic materials. A number of models, namely Matake, McDiarmid, Carpinteri and Spagnoli, Liu and Mahadevan and Papadopoulos, were applied to fatigue l...

Full description

Bibliographic Details
Main Authors: Gonçalves Roberta A., Pereira Marcos V., Darwish Fathi A.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201816516013
Description
Summary:A comparative study is made of the applicability of critical plane based multiaxial high cycle fatigue models to predicting the fatigue behavior of metallic materials. A number of models, namely Matake, McDiarmid, Carpinteri and Spagnoli, Liu and Mahadevan and Papadopoulos, were applied to fatigue limit states, involving synchronous fully reversed in-phase sinusoidal bend and torsion loading. The results obtained indicated a good predictive capability of the models with an average error index situated approximately between -5,5% and 4,5%. However, this average was limited to less than 3% for the latter three models. Finally, the critical plane orientation, which, for a given material, is characteristic of the proper model, is compared with that of the fracture plane, exclusively determined by the ratio between the shear stress and normal stress amplitudes.
ISSN:2261-236X