The [simple carbon project] model v1.0

<p>We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the c...

Full description

Bibliographic Details
Main Authors: C. M. O'Neill, A. McC. Hogg, M. J. Ellwood, S. M. Eggins, B. N. Opdyke
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/12/1541/2019/gmd-12-1541-2019.pdf
id doaj-7699bedc135d4cf88a177c320a253f93
record_format Article
spelling doaj-7699bedc135d4cf88a177c320a253f932020-11-24T22:16:19ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-04-01121541157210.5194/gmd-12-1541-2019The [simple carbon project] model v1.0C. M. O'NeillA. McC. HoggM. J. EllwoodS. M. EgginsB. N. Opdyke<p>We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the concentrations of a range of elements within the carbon cycle by simulating ocean circulation, biological, chemical, atmospheric and terrestrial carbon cycle processes. The model is capable of reproducing both paleo and modern observations and aligns with CMIP5 model projections. SCP-M's fast run time, simplified layout and matrix structure render it a flexible and easy-to-use tool for paleo and modern carbon cycle simulations. The ease of data integration also enables model–data optimisations. Limitations of the model include the prescription of many fluxes and an ocean-basin-averaged topology, which may not be applicable to more detailed simulations.</p> <p>In this paper we demonstrate SCP-M's application primarily with an analysis of the carbon cycle transition from the Last Glacial Maximum (LGM) to the Holocene and also with the modern carbon cycle under the influence of anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emissions. We conduct an atmospheric and ocean multi-proxy model–data parameter optimisation for the LGM and late Holocene periods using the growing pool of published paleo atmosphere and ocean data for <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span> and the carbonate ion proxy. The results provide strong evidence for an ocean-wide physical mechanism to deliver the LGM-to-Holocene carbon cycle transition. Alongside ancillary changes in ocean temperature, volume, salinity, sea-ice cover and atmospheric radiocarbon production rate, changes in global overturning circulation and, to a lesser extent, Atlantic meridional overturning circulation can drive the observed LGM and late Holocene signals in atmospheric <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span>, and the oceanic distribution of <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span> and the carbonate ion proxy. Further work is needed on the analysis and processing of ocean proxy data to improve confidence in these modelling results.</p>https://www.geosci-model-dev.net/12/1541/2019/gmd-12-1541-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author C. M. O'Neill
A. McC. Hogg
M. J. Ellwood
S. M. Eggins
B. N. Opdyke
spellingShingle C. M. O'Neill
A. McC. Hogg
M. J. Ellwood
S. M. Eggins
B. N. Opdyke
The [simple carbon project] model v1.0
Geoscientific Model Development
author_facet C. M. O'Neill
A. McC. Hogg
M. J. Ellwood
S. M. Eggins
B. N. Opdyke
author_sort C. M. O'Neill
title The [simple carbon project] model v1.0
title_short The [simple carbon project] model v1.0
title_full The [simple carbon project] model v1.0
title_fullStr The [simple carbon project] model v1.0
title_full_unstemmed The [simple carbon project] model v1.0
title_sort [simple carbon project] model v1.0
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2019-04-01
description <p>We construct a carbon cycle box model to process observed or inferred geochemical evidence from modern and paleo settings. The [simple carbon project] model v1.0 (SCP-M) combines a modern understanding of the ocean circulation regime with the Earth's carbon cycle. SCP-M estimates the concentrations of a range of elements within the carbon cycle by simulating ocean circulation, biological, chemical, atmospheric and terrestrial carbon cycle processes. The model is capable of reproducing both paleo and modern observations and aligns with CMIP5 model projections. SCP-M's fast run time, simplified layout and matrix structure render it a flexible and easy-to-use tool for paleo and modern carbon cycle simulations. The ease of data integration also enables model–data optimisations. Limitations of the model include the prescription of many fluxes and an ocean-basin-averaged topology, which may not be applicable to more detailed simulations.</p> <p>In this paper we demonstrate SCP-M's application primarily with an analysis of the carbon cycle transition from the Last Glacial Maximum (LGM) to the Holocene and also with the modern carbon cycle under the influence of anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emissions. We conduct an atmospheric and ocean multi-proxy model–data parameter optimisation for the LGM and late Holocene periods using the growing pool of published paleo atmosphere and ocean data for <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span> and the carbonate ion proxy. The results provide strong evidence for an ocean-wide physical mechanism to deliver the LGM-to-Holocene carbon cycle transition. Alongside ancillary changes in ocean temperature, volume, salinity, sea-ice cover and atmospheric radiocarbon production rate, changes in global overturning circulation and, to a lesser extent, Atlantic meridional overturning circulation can drive the observed LGM and late Holocene signals in atmospheric <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span>, and the oceanic distribution of <span class="inline-formula"><i>δ</i><sup>13</sup>C</span>, <span class="inline-formula">Δ<sup>14</sup>C</span> and the carbonate ion proxy. Further work is needed on the analysis and processing of ocean proxy data to improve confidence in these modelling results.</p>
url https://www.geosci-model-dev.net/12/1541/2019/gmd-12-1541-2019.pdf
work_keys_str_mv AT cmoneill thesimplecarbonprojectmodelv10
AT amcchogg thesimplecarbonprojectmodelv10
AT mjellwood thesimplecarbonprojectmodelv10
AT smeggins thesimplecarbonprojectmodelv10
AT bnopdyke thesimplecarbonprojectmodelv10
AT cmoneill simplecarbonprojectmodelv10
AT amcchogg simplecarbonprojectmodelv10
AT mjellwood simplecarbonprojectmodelv10
AT smeggins simplecarbonprojectmodelv10
AT bnopdyke simplecarbonprojectmodelv10
_version_ 1725790614493069312