The Semigroup and the Inverse of the Laplacian on the Heisenberg Group

By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the in...

Full description

Bibliographic Details
Main Authors: APARAJITA DASGUPTA, M.W WONG
Format: Article
Language:English
Published: Universidad de La Frontera 2010-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006
Description
Summary:By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t &#8712; R {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.<br>Mediante descomposición del Laplaceano sobre el grupo de Heisenberg en una familia de operadores diferenciales parciales parametrizados Lt, t &#8712; R {0}, y usando transformada de Fourier-Wigner parametrizada, damos fórmulas y estimativas para la continuidad fuerte del semigrupo generado por Lt, y la inversa de Lt. Usando esas fórmulas y estimativas obtenemos estimativas de Sobolev para el semigrupo a un parámetro y la inversa del Laplaceano.
ISSN:0716-7776
0719-0646