X-ray Pulsar Signal Denoising Based on Variational Mode Decomposition

Pulsars, especially X-ray pulsars detectable for small-size detectors, are highly accurate natural clocks suggesting potential applications such as interplanetary navigation control. Due to various complex cosmic background noise, the original pulsar signals, namely photon sequences, observed by det...

Full description

Bibliographic Details
Main Authors: Qiang Chen, Yong Zhao, Lixia Yan
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/9/1181
Description
Summary:Pulsars, especially X-ray pulsars detectable for small-size detectors, are highly accurate natural clocks suggesting potential applications such as interplanetary navigation control. Due to various complex cosmic background noise, the original pulsar signals, namely photon sequences, observed by detectors have low signal-to-noise ratios (SNRs) that obstruct the practical uses. This paper presents the pulsar denoising strategy developed based on the variational mode decomposition (VMD) approach. It is actually the initial work of our interplanetary navigation control research. The original pulsar signals are decomposed into intrinsic mode functions (IMFs) via VMD, by which the Gaussian noise contaminating the pulsar signals can be attenuated because of the filtering effect during signal decomposition and reconstruction. Comparison experiments based on both simulation and HEASARC-archived X-ray pulsar signals are carried out to validate the effectiveness of the proposed pulsar denoising strategy.
ISSN:1099-4300