GC-MS Fingerprints Profiling Using Machine Learning Models for Food Flavor Prediction

Food flavor quality evaluation is attracting continuous attention, but a suitable evaluation system is severely lacking. Gas chromatography-mass spectrometry/olfactometry (GC-MS/O) is widely used to solve the food flavor evaluation problem, but the olfactometry evaluation is unfeasible to be carried...

Full description

Bibliographic Details
Main Authors: Kexin Bi, Dong Zhang, Tong Qiu, Yizhen Huang
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/8/1/23
Description
Summary:Food flavor quality evaluation is attracting continuous attention, but a suitable evaluation system is severely lacking. Gas chromatography-mass spectrometry/olfactometry (GC-MS/O) is widely used to solve the food flavor evaluation problem, but the olfactometry evaluation is unfeasible to be carried out in large batches and is unreliable due to potential issue of an operator or systematic laboratory effect. Thus, a novel fingerprint modeling and profiling process was proposed based on several machine learning models including convolutional neural network (CNN). The fingerprint template was created by the data analysis of existing GC-MS spectrum dataset. Then the fingerprint image generation program was applied for structuring the complex instrumental data. Food olfactometry result was obtained by a machine learning method based on CNN using fingerprint image as the input. The case study on peanut oil samples demonstrated the model accuracy of around 93%. By structure optimization and further dataset expansion, the whole process has the potential to be utilized by sensory laboratories for aroma analysis instead of humans.
ISSN:2227-9717