Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads
This study systematically investigates the failure patterns, energy dissipation, and fracture behavior of rock specimens containing a vertical hole under impact loads. First, an improved damage calculation equation suitable for the analysis of rock specimens with a vertical hole is obtained based on...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/8863645 |
id |
doaj-77c378ae43184d66be8df2cabb3134db |
---|---|
record_format |
Article |
spelling |
doaj-77c378ae43184d66be8df2cabb3134db2020-11-25T02:50:11ZengHindawi LimitedAdvances in Civil Engineering1687-80861687-80942020-01-01202010.1155/2020/88636458863645Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact LoadsBing Dai0Xinyao Luo1Li Chen2Yakun Tian3Zhijun Zhang4Ying Chen5Qiwei Shan6School of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaSchool of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaDeep Mining Laboratory of Gold Group Co., Ltd, Laizhou, ChinaSchool of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaSchool of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaSchool of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaSchool of Resources Environment and Safety Engineering, University of South China, Hengyang, ChinaThis study systematically investigates the failure patterns, energy dissipation, and fracture behavior of rock specimens containing a vertical hole under impact loads. First, an improved damage calculation equation suitable for the analysis of rock specimens with a vertical hole is obtained based on the one-dimensional stress wave theory and the interface continuity condition. After that, the Hopkinson pressure bar (SHPB) device was used to conduct cyclic impact tests with different impact pressures and impact modes (impact pressures with equal amplitude and unequal amplitude). The experimental results suggest that, under the equal-amplitude high pressure and unequal-amplitude pressure, the degree of damage of the rock significantly increased, the bearing capacity greatly reduced, and the rock gradually transitions from having good ductility to experiencing brittle failure. The cumulative specific energy absorption value gradually increases with the increase in the cyclic impact. Compared to that of the equal impact condition, the degree of damage to the rock is more severe for the case of equal-amplitude high pressure and unequal impact, and the failure mode undergoes a transformation from transverse tensile failure to transverse tensile failure-axial splitting failure combination and axial splitting failure. Through the analysis of rock energy changes and rock failure patterns during cyclic impact, it will be helpful to predict and control the fracture caused by local stress concentration during excavation, thus can reduce the cost of support and reinforcement in excavation and improve the stability of surrounding rocks.http://dx.doi.org/10.1155/2020/8863645 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bing Dai Xinyao Luo Li Chen Yakun Tian Zhijun Zhang Ying Chen Qiwei Shan |
spellingShingle |
Bing Dai Xinyao Luo Li Chen Yakun Tian Zhijun Zhang Ying Chen Qiwei Shan Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads Advances in Civil Engineering |
author_facet |
Bing Dai Xinyao Luo Li Chen Yakun Tian Zhijun Zhang Ying Chen Qiwei Shan |
author_sort |
Bing Dai |
title |
Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads |
title_short |
Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads |
title_full |
Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads |
title_fullStr |
Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads |
title_full_unstemmed |
Analysis of the Damage Characteristics and Energy Dissipation of Rocks with a Vertical Hole under Cyclic Impact Loads |
title_sort |
analysis of the damage characteristics and energy dissipation of rocks with a vertical hole under cyclic impact loads |
publisher |
Hindawi Limited |
series |
Advances in Civil Engineering |
issn |
1687-8086 1687-8094 |
publishDate |
2020-01-01 |
description |
This study systematically investigates the failure patterns, energy dissipation, and fracture behavior of rock specimens containing a vertical hole under impact loads. First, an improved damage calculation equation suitable for the analysis of rock specimens with a vertical hole is obtained based on the one-dimensional stress wave theory and the interface continuity condition. After that, the Hopkinson pressure bar (SHPB) device was used to conduct cyclic impact tests with different impact pressures and impact modes (impact pressures with equal amplitude and unequal amplitude). The experimental results suggest that, under the equal-amplitude high pressure and unequal-amplitude pressure, the degree of damage of the rock significantly increased, the bearing capacity greatly reduced, and the rock gradually transitions from having good ductility to experiencing brittle failure. The cumulative specific energy absorption value gradually increases with the increase in the cyclic impact. Compared to that of the equal impact condition, the degree of damage to the rock is more severe for the case of equal-amplitude high pressure and unequal impact, and the failure mode undergoes a transformation from transverse tensile failure to transverse tensile failure-axial splitting failure combination and axial splitting failure. Through the analysis of rock energy changes and rock failure patterns during cyclic impact, it will be helpful to predict and control the fracture caused by local stress concentration during excavation, thus can reduce the cost of support and reinforcement in excavation and improve the stability of surrounding rocks. |
url |
http://dx.doi.org/10.1155/2020/8863645 |
work_keys_str_mv |
AT bingdai analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT xinyaoluo analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT lichen analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT yakuntian analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT zhijunzhang analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT yingchen analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads AT qiweishan analysisofthedamagecharacteristicsandenergydissipationofrockswithaverticalholeundercyclicimpactloads |
_version_ |
1715374021964464128 |