Target separation detection and motion parameter estimation method based on time-varying autoregressive model

The authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion p...

Full description

Bibliographic Details
Main Authors: Yaolin Zhang, Yuhao Yang, Qiang Cheng, Yanjun Hao
Format: Article
Language:English
Published: Wiley 2019-09-01
Series:The Journal of Engineering
Subjects:
Online Access:https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665
id doaj-7816ab67bc26418381cdf18eece3e350
record_format Article
spelling doaj-7816ab67bc26418381cdf18eece3e3502021-04-02T08:23:34ZengWileyThe Journal of Engineering2051-33052019-09-0110.1049/joe.2019.0665JOE.2019.0665Target separation detection and motion parameter estimation method based on time-varying autoregressive modelYaolin Zhang0Yuhao Yang1Qiang Cheng2Yanjun Hao3CETCCETCCETCCETCThe authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion parameters are estimated based on the Doppler frequencies at every pulse time in a radar frame. In particular, for coherent multipulse echo signal, the TVAR model is first utilised to extract multiple instantaneous Doppler frequencies at each pulse time, thus forming a Doppler frequency matrix. Second, the Doppler tracking and polynomial fitting methods are utilised to estimate the radial velocity and acceleration based on the Doppler frequency matrix. Finally, the target separation detection is achieved by acquiring and validating multiple Doppler frequency components in the same range cell. Simulations and verifications are carried out, and the results show that the proposed method is effective for target separation detection and precision motion parameter estimation, which could be of great value radar target detection, tracking, and automatic target recognition.https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665radar detectiontarget trackingparameter estimationradar resolutionradar target recognitionradar trackingdoppler radarobject detectionautoregressive processesradar signal processingradar imagingfiltering theorytarget separation detectionmotion parameter estimation methodtime-varying autoregressive modeltvar modelmultiple targetsradar range cellmotion parameterspulse timemultiple instantaneous doppler frequenciesdoppler frequency matrixdoppler trackingacquiring validating multiple doppler frequency componentsprecision motion parameter estimationgreat value radar target detectionautomatic target recognition
collection DOAJ
language English
format Article
sources DOAJ
author Yaolin Zhang
Yuhao Yang
Qiang Cheng
Yanjun Hao
spellingShingle Yaolin Zhang
Yuhao Yang
Qiang Cheng
Yanjun Hao
Target separation detection and motion parameter estimation method based on time-varying autoregressive model
The Journal of Engineering
radar detection
target tracking
parameter estimation
radar resolution
radar target recognition
radar tracking
doppler radar
object detection
autoregressive processes
radar signal processing
radar imaging
filtering theory
target separation detection
motion parameter estimation method
time-varying autoregressive model
tvar model
multiple targets
radar range cell
motion parameters
pulse time
multiple instantaneous doppler frequencies
doppler frequency matrix
doppler tracking
acquiring validating multiple doppler frequency components
precision motion parameter estimation
great value radar target detection
automatic target recognition
author_facet Yaolin Zhang
Yuhao Yang
Qiang Cheng
Yanjun Hao
author_sort Yaolin Zhang
title Target separation detection and motion parameter estimation method based on time-varying autoregressive model
title_short Target separation detection and motion parameter estimation method based on time-varying autoregressive model
title_full Target separation detection and motion parameter estimation method based on time-varying autoregressive model
title_fullStr Target separation detection and motion parameter estimation method based on time-varying autoregressive model
title_full_unstemmed Target separation detection and motion parameter estimation method based on time-varying autoregressive model
title_sort target separation detection and motion parameter estimation method based on time-varying autoregressive model
publisher Wiley
series The Journal of Engineering
issn 2051-3305
publishDate 2019-09-01
description The authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion parameters are estimated based on the Doppler frequencies at every pulse time in a radar frame. In particular, for coherent multipulse echo signal, the TVAR model is first utilised to extract multiple instantaneous Doppler frequencies at each pulse time, thus forming a Doppler frequency matrix. Second, the Doppler tracking and polynomial fitting methods are utilised to estimate the radial velocity and acceleration based on the Doppler frequency matrix. Finally, the target separation detection is achieved by acquiring and validating multiple Doppler frequency components in the same range cell. Simulations and verifications are carried out, and the results show that the proposed method is effective for target separation detection and precision motion parameter estimation, which could be of great value radar target detection, tracking, and automatic target recognition.
topic radar detection
target tracking
parameter estimation
radar resolution
radar target recognition
radar tracking
doppler radar
object detection
autoregressive processes
radar signal processing
radar imaging
filtering theory
target separation detection
motion parameter estimation method
time-varying autoregressive model
tvar model
multiple targets
radar range cell
motion parameters
pulse time
multiple instantaneous doppler frequencies
doppler frequency matrix
doppler tracking
acquiring validating multiple doppler frequency components
precision motion parameter estimation
great value radar target detection
automatic target recognition
url https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665
work_keys_str_mv AT yaolinzhang targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel
AT yuhaoyang targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel
AT qiangcheng targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel
AT yanjunhao targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel
_version_ 1724170473257828352