Target separation detection and motion parameter estimation method based on time-varying autoregressive model
The authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion p...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-09-01
|
Series: | The Journal of Engineering |
Subjects: | |
Online Access: | https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665 |
id |
doaj-7816ab67bc26418381cdf18eece3e350 |
---|---|
record_format |
Article |
spelling |
doaj-7816ab67bc26418381cdf18eece3e3502021-04-02T08:23:34ZengWileyThe Journal of Engineering2051-33052019-09-0110.1049/joe.2019.0665JOE.2019.0665Target separation detection and motion parameter estimation method based on time-varying autoregressive modelYaolin Zhang0Yuhao Yang1Qiang Cheng2Yanjun Hao3CETCCETCCETCCETCThe authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion parameters are estimated based on the Doppler frequencies at every pulse time in a radar frame. In particular, for coherent multipulse echo signal, the TVAR model is first utilised to extract multiple instantaneous Doppler frequencies at each pulse time, thus forming a Doppler frequency matrix. Second, the Doppler tracking and polynomial fitting methods are utilised to estimate the radial velocity and acceleration based on the Doppler frequency matrix. Finally, the target separation detection is achieved by acquiring and validating multiple Doppler frequency components in the same range cell. Simulations and verifications are carried out, and the results show that the proposed method is effective for target separation detection and precision motion parameter estimation, which could be of great value radar target detection, tracking, and automatic target recognition.https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665radar detectiontarget trackingparameter estimationradar resolutionradar target recognitionradar trackingdoppler radarobject detectionautoregressive processesradar signal processingradar imagingfiltering theorytarget separation detectionmotion parameter estimation methodtime-varying autoregressive modeltvar modelmultiple targetsradar range cellmotion parameterspulse timemultiple instantaneous doppler frequenciesdoppler frequency matrixdoppler trackingacquiring validating multiple doppler frequency componentsprecision motion parameter estimationgreat value radar target detectionautomatic target recognition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yaolin Zhang Yuhao Yang Qiang Cheng Yanjun Hao |
spellingShingle |
Yaolin Zhang Yuhao Yang Qiang Cheng Yanjun Hao Target separation detection and motion parameter estimation method based on time-varying autoregressive model The Journal of Engineering radar detection target tracking parameter estimation radar resolution radar target recognition radar tracking doppler radar object detection autoregressive processes radar signal processing radar imaging filtering theory target separation detection motion parameter estimation method time-varying autoregressive model tvar model multiple targets radar range cell motion parameters pulse time multiple instantaneous doppler frequencies doppler frequency matrix doppler tracking acquiring validating multiple doppler frequency components precision motion parameter estimation great value radar target detection automatic target recognition |
author_facet |
Yaolin Zhang Yuhao Yang Qiang Cheng Yanjun Hao |
author_sort |
Yaolin Zhang |
title |
Target separation detection and motion parameter estimation method based on time-varying autoregressive model |
title_short |
Target separation detection and motion parameter estimation method based on time-varying autoregressive model |
title_full |
Target separation detection and motion parameter estimation method based on time-varying autoregressive model |
title_fullStr |
Target separation detection and motion parameter estimation method based on time-varying autoregressive model |
title_full_unstemmed |
Target separation detection and motion parameter estimation method based on time-varying autoregressive model |
title_sort |
target separation detection and motion parameter estimation method based on time-varying autoregressive model |
publisher |
Wiley |
series |
The Journal of Engineering |
issn |
2051-3305 |
publishDate |
2019-09-01 |
description |
The authors report a target separation detection and motion parameter estimation method based on the time-varying autoregressive (TVAR) model. The TVAR model is used to extract the instantaneous Doppler frequencies of multiple targets or scattering points in a same radar range cell, and the motion parameters are estimated based on the Doppler frequencies at every pulse time in a radar frame. In particular, for coherent multipulse echo signal, the TVAR model is first utilised to extract multiple instantaneous Doppler frequencies at each pulse time, thus forming a Doppler frequency matrix. Second, the Doppler tracking and polynomial fitting methods are utilised to estimate the radial velocity and acceleration based on the Doppler frequency matrix. Finally, the target separation detection is achieved by acquiring and validating multiple Doppler frequency components in the same range cell. Simulations and verifications are carried out, and the results show that the proposed method is effective for target separation detection and precision motion parameter estimation, which could be of great value radar target detection, tracking, and automatic target recognition. |
topic |
radar detection target tracking parameter estimation radar resolution radar target recognition radar tracking doppler radar object detection autoregressive processes radar signal processing radar imaging filtering theory target separation detection motion parameter estimation method time-varying autoregressive model tvar model multiple targets radar range cell motion parameters pulse time multiple instantaneous doppler frequencies doppler frequency matrix doppler tracking acquiring validating multiple doppler frequency components precision motion parameter estimation great value radar target detection automatic target recognition |
url |
https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0665 |
work_keys_str_mv |
AT yaolinzhang targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel AT yuhaoyang targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel AT qiangcheng targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel AT yanjunhao targetseparationdetectionandmotionparameterestimationmethodbasedontimevaryingautoregressivemodel |
_version_ |
1724170473257828352 |