Therapeutic Potential of Inorganic Nanoparticles for the Delivery of Monoclonal Antibodies

Monoclonal antibodies (mAbs), available for a range of diseases, including tumours, leukemia, and multiple sclerosis, are emerging as the fastest growing area of therapeutic drug development. The greatest advantage of therapeutic mAbs is their ability to bind with a high degree of specificity to tar...

Full description

Bibliographic Details
Main Authors: Christopher T. Turner, Steven J. P. McInnes, Nicolas H. Voelcker, Allison J. Cowin
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/309602
Description
Summary:Monoclonal antibodies (mAbs), available for a range of diseases, including tumours, leukemia, and multiple sclerosis, are emerging as the fastest growing area of therapeutic drug development. The greatest advantage of therapeutic mAbs is their ability to bind with a high degree of specificity to target proteins involved in disease pathophysiology. In response, effector functions are triggered and these ameliorate the disease cascade. As an alternative to this reliance on effector functions, drugs can be conjugated to mAbs. The ability to target compounds to the site of pathology minimises the nonspecific side effects associated with systemic administration. In both instances, optimising the delivery, absorption, and distribution of the mAbs, whilst minimising potential side effects, remain the key hurdles to improved clinical outcomes. Novel delivery strategies are being investigated with more vigour in recent years, and nanoparticles are being identified as suitable vehicles. In conjunction with permitting a controlled release profile, nanoparticles protect the drug from degradation, reducing both the dose and frequency of administration. Moreover, these particles shield the patient from the immune complications associated with high dose mAb infusions or drug cytotoxicity. This review outlines recent advances in nanoparticle technology and how they may be of benefit as therapeutic mAb delivery/targeting vehicles.
ISSN:1687-4110
1687-4129