Biowaste-Derived Humic-like Substances Improve Growth and Quality of Orange Jasmine (<i>Murraya paniculata</i> L. Jacq.) Plants in Soilless Potted Culture

Humic-like substances (HLS) are among the most used biostimulants in agriculture as a means for improving plant growth, nutrient uptake, crop yield, and stress tolerance. HLS derived from municipal biowastes were applied as a substrate drench in order to evaluate their biostimulatory effect on the g...

Full description

Bibliographic Details
Main Authors: Giancarlo Fascella, Enzo Montoneri, Youssef Rouphael
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Resources
Subjects:
Online Access:https://www.mdpi.com/2079-9276/10/8/80
Description
Summary:Humic-like substances (HLS) are among the most used biostimulants in agriculture as a means for improving plant growth, nutrient uptake, crop yield, and stress tolerance. HLS derived from municipal biowastes were applied as a substrate drench in order to evaluate their biostimulatory effect on the growth and ornamental quality of Orange Jasmine (<i>Murraya paniculata</i> L. Jacq.) potted plants. Two HLS, derived from the digestion of the organic humic fraction and from composting of a mix of sewage sludge digestate and gardening residues, were compared with a commercial leonardite-based product in the framework of a greenhouse experiment in soilless culture. The application of the two biowaste-derived HLS resulted in plants showing a 39.9%, 87.0%, 111.6%, 35.4%, 37.9%, 35.3%, and 81.3% increase in plant height, number of flowers and fruits, leaf production, total dry biomass, root length, and water use efficiency, respectively, compared to those treated with the commercial product and the untreated (control) plants. The enhanced growth performance of HLS-treated plants was due to the higher chlorophyll relative content (+24.2% on average) and net photosynthesis (+114.7% on average) of their leaves. The positive results obtained from the application of non-commercial HLS suggest that biowaste recycling is a sustainable and environment-friendly source of biostimulants, as an alternative to agrochemicals and existing leonardite-based plant biostimulants.
ISSN:2079-9276