Graph Classes Generated by Mycielskians

In this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly,...

Full description

Bibliographic Details
Main Authors: Borowiecki Mieczys law, Borowiecki Piotr, Drgas-Burchardt Ewa, Sidorowicz Elżbieta
Format: Article
Language:English
Published: Sciendo 2020-11-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2345
id doaj-78efee0b51f9412789b115d78becbcc3
record_format Article
spelling doaj-78efee0b51f9412789b115d78becbcc32021-09-05T17:20:25ZengSciendoDiscussiones Mathematicae Graph Theory2083-58922020-11-014041163117310.7151/dmgt.2345dmgt.2345Graph Classes Generated by MycielskiansBorowiecki Mieczys law0Borowiecki Piotr1Drgas-Burchardt Ewa2Sidorowicz Elżbieta3Institute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandFaculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233Gdańsk, PolandInstitute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandInstitute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandIn this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs.https://doi.org/10.7151/dmgt.2345mycielski graphsgraph coloringchromatic number05c1505c7568r1005c60
collection DOAJ
language English
format Article
sources DOAJ
author Borowiecki Mieczys law
Borowiecki Piotr
Drgas-Burchardt Ewa
Sidorowicz Elżbieta
spellingShingle Borowiecki Mieczys law
Borowiecki Piotr
Drgas-Burchardt Ewa
Sidorowicz Elżbieta
Graph Classes Generated by Mycielskians
Discussiones Mathematicae Graph Theory
mycielski graphs
graph coloring
chromatic number
05c15
05c75
68r10
05c60
author_facet Borowiecki Mieczys law
Borowiecki Piotr
Drgas-Burchardt Ewa
Sidorowicz Elżbieta
author_sort Borowiecki Mieczys law
title Graph Classes Generated by Mycielskians
title_short Graph Classes Generated by Mycielskians
title_full Graph Classes Generated by Mycielskians
title_fullStr Graph Classes Generated by Mycielskians
title_full_unstemmed Graph Classes Generated by Mycielskians
title_sort graph classes generated by mycielskians
publisher Sciendo
series Discussiones Mathematicae Graph Theory
issn 2083-5892
publishDate 2020-11-01
description In this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs.
topic mycielski graphs
graph coloring
chromatic number
05c15
05c75
68r10
05c60
url https://doi.org/10.7151/dmgt.2345
work_keys_str_mv AT borowieckimieczyslaw graphclassesgeneratedbymycielskians
AT borowieckipiotr graphclassesgeneratedbymycielskians
AT drgasburchardtewa graphclassesgeneratedbymycielskians
AT sidorowiczelzbieta graphclassesgeneratedbymycielskians
_version_ 1717786370732195840