Graph Classes Generated by Mycielskians
In this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly,...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-11-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2345 |
id |
doaj-78efee0b51f9412789b115d78becbcc3 |
---|---|
record_format |
Article |
spelling |
doaj-78efee0b51f9412789b115d78becbcc32021-09-05T17:20:25ZengSciendoDiscussiones Mathematicae Graph Theory2083-58922020-11-014041163117310.7151/dmgt.2345dmgt.2345Graph Classes Generated by MycielskiansBorowiecki Mieczys law0Borowiecki Piotr1Drgas-Burchardt Ewa2Sidorowicz Elżbieta3Institute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandFaculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233Gdańsk, PolandInstitute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandInstitute of Mathematics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65–516Zielona Góra, PolandIn this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs.https://doi.org/10.7151/dmgt.2345mycielski graphsgraph coloringchromatic number05c1505c7568r1005c60 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Borowiecki Mieczys law Borowiecki Piotr Drgas-Burchardt Ewa Sidorowicz Elżbieta |
spellingShingle |
Borowiecki Mieczys law Borowiecki Piotr Drgas-Burchardt Ewa Sidorowicz Elżbieta Graph Classes Generated by Mycielskians Discussiones Mathematicae Graph Theory mycielski graphs graph coloring chromatic number 05c15 05c75 68r10 05c60 |
author_facet |
Borowiecki Mieczys law Borowiecki Piotr Drgas-Burchardt Ewa Sidorowicz Elżbieta |
author_sort |
Borowiecki Mieczys law |
title |
Graph Classes Generated by Mycielskians |
title_short |
Graph Classes Generated by Mycielskians |
title_full |
Graph Classes Generated by Mycielskians |
title_fullStr |
Graph Classes Generated by Mycielskians |
title_full_unstemmed |
Graph Classes Generated by Mycielskians |
title_sort |
graph classes generated by mycielskians |
publisher |
Sciendo |
series |
Discussiones Mathematicae Graph Theory |
issn |
2083-5892 |
publishDate |
2020-11-01 |
description |
In this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs. |
topic |
mycielski graphs graph coloring chromatic number 05c15 05c75 68r10 05c60 |
url |
https://doi.org/10.7151/dmgt.2345 |
work_keys_str_mv |
AT borowieckimieczyslaw graphclassesgeneratedbymycielskians AT borowieckipiotr graphclassesgeneratedbymycielskians AT drgasburchardtewa graphclassesgeneratedbymycielskians AT sidorowiczelzbieta graphclassesgeneratedbymycielskians |
_version_ |
1717786370732195840 |