Measurements and modeling of stray magnetic fields and the simulation of their impact on the Compact Linear Collider at 380 GeV

The Compact Linear Collider (CLIC) targets a nanometer beam size at the collision point. Realizing this beam size requires the generation and transport of ultralow emittance beams. Dynamic imperfections can deflect the colliding beams, leading to a collision with a relative offset. They can also deg...

Full description

Bibliographic Details
Main Authors: C. Gohil, P. N. Burrows, N. Blaskovic Kraljevic, D. Schulte, B. Heilig
Format: Article
Language:English
Published: American Physical Society 2021-01-01
Series:Physical Review Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevAccelBeams.24.011001
Description
Summary:The Compact Linear Collider (CLIC) targets a nanometer beam size at the collision point. Realizing this beam size requires the generation and transport of ultralow emittance beams. Dynamic imperfections can deflect the colliding beams, leading to a collision with a relative offset. They can also degrade the emittance of each beam. Both of these effects can significantly impact the luminosity of CLIC. In this paper, we examine a newly considered dynamic imperfection: stray magnetic fields. Measurements of stray magnetic fields in the Large Hadron Collider tunnel are presented and used to develop a statistical model that can be used to realistically generate stray magnetic fields in simulations. The model is used in integrated simulations of CLIC at 380 GeV including mitigation systems for stray magnetic fields to evaluate their impact on luminosity.
ISSN:2469-9888