An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells

Abstract Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal ve...

Full description

Bibliographic Details
Main Authors: Yifang Xie, Daqi Wang, Feng Lan, Gang Wei, Ting Ni, Renjie Chai, Dong Liu, Shijun Hu, Mingqing Li, Dajin Li, Hongyan Wang, Yongming Wang
Format: Article
Language:English
Published: Nature Publishing Group 2017-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-02456-y
Description
Summary:Abstract Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.
ISSN:2045-2322