Construction of g-C3N4-mNb2O5 Composites with Enhanced Visible Light Photocatalytic Activity

A series of composites consisting of g-C3N4 sheet and mesoporous Nb2O5 (mNb2O5) microsphere were fabricated by in situ hydrolysis deposition of NbCl5 onto g-C3N4 sheet followed by solvothermal treatment. The samples were characterized using powder X-ray diffraction (XRD), Fourier transform infrared...

Full description

Bibliographic Details
Main Authors: Meiyin Wang, Hui Wang, Yuanhang Ren, Cheng Wang, Zhewei Weng, Bin Yue, Heyong He
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/6/427
Description
Summary:A series of composites consisting of g-C3N4 sheet and mesoporous Nb2O5 (mNb2O5) microsphere were fabricated by in situ hydrolysis deposition of NbCl5 onto g-C3N4 sheet followed by solvothermal treatment. The samples were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The photocatalytic activity of the composites was studied by degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC-HCl) in aqueous solution under visible light irradiation (λ > 420 nm). Compared with g-C3N4 and mNb2O5, g-C3N4-mNb2O5 composites have higher photocatalytic activity due to synergistic effect between g-C3N4 and mNb2O5. Among these composites, 4% g-C3N4-mNb2O5 has the highest efficiency and good recyclability for degradation of both RhB and TC-HCl.
ISSN:2079-4991