Cathelicidin-Related Antimicrobial Peptide Regulates CD73 Expression in Mouse Th17 Cells via p38

The effector function of tumor-infiltrated CD4<sup>+</sup> T cells is readily suppressed by many types of immune regulators in the tumor microenvironment, which is one of the major mechanisms of immune tolerance against cancer. Cathelicidin-related antimicrobial peptide (CRAMP), the mous...

Full description

Bibliographic Details
Main Authors: Jeonghyun Lee, Kyong-Oh Shin, Yesol Kim, Jaewon Cho, Hyung W. Lim, Sung-Il Yoon, Geun-Shik Lee, Hyun-Jeong Ko, Pyeung-Hyeun Kim, Yoshikazu Uchida, Kyungho Park, Seung Goo Kang
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/9/6/1561
Description
Summary:The effector function of tumor-infiltrated CD4<sup>+</sup> T cells is readily suppressed by many types of immune regulators in the tumor microenvironment, which is one of the major mechanisms of immune tolerance against cancer. Cathelicidin-related antimicrobial peptide (CRAMP), the mouse analog of LL-37 peptide in humans, is a cationic antimicrobial peptide belonging to the cathelicidin family; however, its secretion by cancer cells and role in the tumor microenvironment (TME) remain unclear. In this study, we explored the possibility of an interaction between effector CD4<sup>+</sup> T cells and CRAMP using in vitro-generated mouse Th17 cells. We found that CRAMP stimulates Th17 cells to express the ectonucleotidase CD73, while simultaneously inducing cell death. This finding suggested that CD73-expressing Th17 cells may function as immune suppressor cells instead of effector cells. In addition, treatment of pharmacological inhibitors of the transforming growth factor-beta (TGF-β) signaling pathway showed that induction of CD73 expression is mediated by the p38 signaling pathway. Overall, our findings suggest that tumor-derived LL-37 likely functions as an immune suppressor that induces immune tolerance against tumors through shaping effector Th17 cells into suppressor Th17 cells, suggesting a new intervention target to improve cancer immunotherapy.
ISSN:2073-4409