Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features
Gallic acid (GA) is a natural anti-cancer compound that can be found in many food sources, including edible mushrooms, fruits, and vegetables. Studies generally attribute the anti-cancer activity of GA to the induction of apoptosis. Here, we reported that GA activated iron-dependent cell death mecha...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Toxins |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6651/11/9/492 |
id |
doaj-797955afb10c4085a8a5ba123ab7a641 |
---|---|
record_format |
Article |
spelling |
doaj-797955afb10c4085a8a5ba123ab7a6412020-11-25T01:36:27ZengMDPI AGToxins2072-66512019-08-0111949210.3390/toxins11090492toxins11090492Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic FeaturesHo Man Tang0Peter Chi Keung Cheung1School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, ChinaSchool of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, ChinaGallic acid (GA) is a natural anti-cancer compound that can be found in many food sources, including edible mushrooms, fruits, and vegetables. Studies generally attribute the anti-cancer activity of GA to the induction of apoptosis. Here, we reported that GA activated iron-dependent cell death mechanisms with apoptotic, ferroptotic, and necroptotic features. Our time-lapse live-cell microscopy study demonstrated that GA could induce coexistence of multiple types of cell death pathways, including apoptosis characterized by mitochondrial cytochrome <i>c</i> release and caspase-3 activation, ferroptosis characterized by lipid peroxidation, and necroptosis characterized by the loss of plasma membrane integrity. This GA-induced cell death could be completely suppressed by exposure to an iron chelator deferoxamine, indicating that it is an iron-dependent cell death process. Importantly, MLKL (mixed lineage kinase domain-like protein) inhibitor necrosulfonamide exerted a synergistic effect by increasing the sensitivity of cancer cells to GA. Taken together, our results provide new mechanistic insights, and also suggest new strategies to enhance the efficacy of this natural anti-cancer compound by identifying the agents that can promote or suppress the GA-induced cell death process.https://www.mdpi.com/2072-6651/11/9/492apoptosiscell deathdeferoxamineferroptosisgallic acidnecroptosisnecrosulfonamide |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ho Man Tang Peter Chi Keung Cheung |
spellingShingle |
Ho Man Tang Peter Chi Keung Cheung Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features Toxins apoptosis cell death deferoxamine ferroptosis gallic acid necroptosis necrosulfonamide |
author_facet |
Ho Man Tang Peter Chi Keung Cheung |
author_sort |
Ho Man Tang |
title |
Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features |
title_short |
Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features |
title_full |
Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features |
title_fullStr |
Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features |
title_full_unstemmed |
Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features |
title_sort |
gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features |
publisher |
MDPI AG |
series |
Toxins |
issn |
2072-6651 |
publishDate |
2019-08-01 |
description |
Gallic acid (GA) is a natural anti-cancer compound that can be found in many food sources, including edible mushrooms, fruits, and vegetables. Studies generally attribute the anti-cancer activity of GA to the induction of apoptosis. Here, we reported that GA activated iron-dependent cell death mechanisms with apoptotic, ferroptotic, and necroptotic features. Our time-lapse live-cell microscopy study demonstrated that GA could induce coexistence of multiple types of cell death pathways, including apoptosis characterized by mitochondrial cytochrome <i>c</i> release and caspase-3 activation, ferroptosis characterized by lipid peroxidation, and necroptosis characterized by the loss of plasma membrane integrity. This GA-induced cell death could be completely suppressed by exposure to an iron chelator deferoxamine, indicating that it is an iron-dependent cell death process. Importantly, MLKL (mixed lineage kinase domain-like protein) inhibitor necrosulfonamide exerted a synergistic effect by increasing the sensitivity of cancer cells to GA. Taken together, our results provide new mechanistic insights, and also suggest new strategies to enhance the efficacy of this natural anti-cancer compound by identifying the agents that can promote or suppress the GA-induced cell death process. |
topic |
apoptosis cell death deferoxamine ferroptosis gallic acid necroptosis necrosulfonamide |
url |
https://www.mdpi.com/2072-6651/11/9/492 |
work_keys_str_mv |
AT homantang gallicacidtriggersirondependentcelldeathwithapoptoticferroptoticandnecroptoticfeatures AT peterchikeungcheung gallicacidtriggersirondependentcelldeathwithapoptoticferroptoticandnecroptoticfeatures |
_version_ |
1725062953582985216 |