Finite-Time Nonfragile Dissipative Control for Discrete-Time Neural Networks with Markovian Jumps and Mixed Time-Delays
This paper considers the stochastic finite-time dissipative (SFTD) control problem based on nonfragile controller for discrete-time neural networks (NNS) with Markovian jumps and mixed delays, in which the mode switching phenomenon, is described as Markov chain, and the mixed delays are composed of...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/5748923 |
Summary: | This paper considers the stochastic finite-time dissipative (SFTD) control problem based on nonfragile controller for discrete-time neural networks (NNS) with Markovian jumps and mixed delays, in which the mode switching phenomenon, is described as Markov chain, and the mixed delays are composed of discrete time-varying delay and distributed delays. First, by selecting an appropriate Lyapunov-Krasovskii functional and applying stochastic analysis methods, some parameters-dependent sufficient conditions for solvability of stochastic finite-time boundedness are derived. Then, the main results are extended to SFTD control. Furthermore, existence condition of nonfragile controller is derived based on solution of linear matrix inequalities (LMIs). Finally, two numerical examples are employed to show the effectiveness of the obtained methods. |
---|---|
ISSN: | 1076-2787 1099-0526 |