Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds

The integration of hydrology and climate is important for understanding the present and future impact of climate on streamflow, which may cause frequent flooding, droughts, and shortage of water supply. In view of this, we assessed the impact of climate change on daily streamflow duration curves as...

Full description

Bibliographic Details
Main Authors: Olkeba Tolessa Leta, Aly I. El-Kadi, Henrietta Dulai
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Sustainability
Subjects:
Online Access:http://www.mdpi.com/2071-1050/10/6/2057
id doaj-79c41ab4be254325a33c01fe8ff4baec
record_format Article
spelling doaj-79c41ab4be254325a33c01fe8ff4baec2020-11-25T01:01:56ZengMDPI AGSustainability2071-10502018-06-01106205710.3390/su10062057su10062057Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island WatershedsOlkeba Tolessa Leta0Aly I. El-Kadi1Henrietta Dulai2Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USAWater Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USADepartment of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USAThe integration of hydrology and climate is important for understanding the present and future impact of climate on streamflow, which may cause frequent flooding, droughts, and shortage of water supply. In view of this, we assessed the impact of climate change on daily streamflow duration curves as well as extreme peak and low flow values. The objectives were to assess how climate change impacts watershed-wide streamflow and its extreme values and to provide an overview of the impacts of different climate change scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5) on streamflow and hydrological extremes when compared with the baseline values. We used the Soil and Water Assessment Tool (SWAT) model for daily streamflow and its extreme value modeling of two watersheds located on the Island of Oahu (Hawaii). Following successful calibration and validation of SWAT at three USGS flow gauging stations, we simulated the impact of climate change by the 2050s (2041–2070) and the 2080s (2071–2100). We used climate change perturbation factors and applied the factors to the historical time series data of 1980–2014. SWAT adequately reproduced observed daily streamflow with Nash-Sutcliffe Efficiency (NSE) values of greater than 0.5 and bracketed >80% of observed streamflow data at 95% model prediction uncertainty at all flow gauging stations, indicating the applicability of the model for future daily streamflow prediction. We found that while the considered climate change scenarios generally show considerable negative impacts on daily streamflow and its extreme values, the extreme peak flows are expected to increase by as much as 22% especially under the RCP 8.5 scenario. However, a consistent decrease in extreme low flows by as much as 60% compared to the baseline values is projected. Larger negative changes of low flows are expected in the upstream part of the watersheds where higher groundwater contributions are expected. Consequently, severe problems, such as frequent hydrological droughts (groundwater scarcity), reduction in agricultural crop productivity, and increase in drinking water demand, are significantly expected on Oahu. Furthermore, the extreme values are more sensitive to rainfall change in comparison to temperature and solar radiation changes. Overall, findings generally indicated that climate change impacts will be amplified by the end of this century and may cause earlier occurrence of hydrological droughts when compared to the current hydrological regime, suggesting water resources managers, ecosystem conservationists, and ecologists to implement mitigation measures to climate change in Hawaii and similar Islands.http://www.mdpi.com/2071-1050/10/6/2057climate changeextreme streamflowHawaiistreamflowSWAT
collection DOAJ
language English
format Article
sources DOAJ
author Olkeba Tolessa Leta
Aly I. El-Kadi
Henrietta Dulai
spellingShingle Olkeba Tolessa Leta
Aly I. El-Kadi
Henrietta Dulai
Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
Sustainability
climate change
extreme streamflow
Hawaii
streamflow
SWAT
author_facet Olkeba Tolessa Leta
Aly I. El-Kadi
Henrietta Dulai
author_sort Olkeba Tolessa Leta
title Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
title_short Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
title_full Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
title_fullStr Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
title_full_unstemmed Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds
title_sort impact of climate change on daily streamflow and its extreme values in pacific island watersheds
publisher MDPI AG
series Sustainability
issn 2071-1050
publishDate 2018-06-01
description The integration of hydrology and climate is important for understanding the present and future impact of climate on streamflow, which may cause frequent flooding, droughts, and shortage of water supply. In view of this, we assessed the impact of climate change on daily streamflow duration curves as well as extreme peak and low flow values. The objectives were to assess how climate change impacts watershed-wide streamflow and its extreme values and to provide an overview of the impacts of different climate change scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5) on streamflow and hydrological extremes when compared with the baseline values. We used the Soil and Water Assessment Tool (SWAT) model for daily streamflow and its extreme value modeling of two watersheds located on the Island of Oahu (Hawaii). Following successful calibration and validation of SWAT at three USGS flow gauging stations, we simulated the impact of climate change by the 2050s (2041–2070) and the 2080s (2071–2100). We used climate change perturbation factors and applied the factors to the historical time series data of 1980–2014. SWAT adequately reproduced observed daily streamflow with Nash-Sutcliffe Efficiency (NSE) values of greater than 0.5 and bracketed >80% of observed streamflow data at 95% model prediction uncertainty at all flow gauging stations, indicating the applicability of the model for future daily streamflow prediction. We found that while the considered climate change scenarios generally show considerable negative impacts on daily streamflow and its extreme values, the extreme peak flows are expected to increase by as much as 22% especially under the RCP 8.5 scenario. However, a consistent decrease in extreme low flows by as much as 60% compared to the baseline values is projected. Larger negative changes of low flows are expected in the upstream part of the watersheds where higher groundwater contributions are expected. Consequently, severe problems, such as frequent hydrological droughts (groundwater scarcity), reduction in agricultural crop productivity, and increase in drinking water demand, are significantly expected on Oahu. Furthermore, the extreme values are more sensitive to rainfall change in comparison to temperature and solar radiation changes. Overall, findings generally indicated that climate change impacts will be amplified by the end of this century and may cause earlier occurrence of hydrological droughts when compared to the current hydrological regime, suggesting water resources managers, ecosystem conservationists, and ecologists to implement mitigation measures to climate change in Hawaii and similar Islands.
topic climate change
extreme streamflow
Hawaii
streamflow
SWAT
url http://www.mdpi.com/2071-1050/10/6/2057
work_keys_str_mv AT olkebatolessaleta impactofclimatechangeondailystreamflowanditsextremevaluesinpacificislandwatersheds
AT alyielkadi impactofclimatechangeondailystreamflowanditsextremevaluesinpacificislandwatersheds
AT henriettadulai impactofclimatechangeondailystreamflowanditsextremevaluesinpacificislandwatersheds
_version_ 1725206762963861504